Autohelm Inboard Autopilots
(ST6000 and ST7000 systems)

Service Manual
<table>
<thead>
<tr>
<th>System / Module</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST7000 System</td>
<td>1. Service Procedures</td>
</tr>
<tr>
<td></td>
<td>2. Technical Information</td>
</tr>
<tr>
<td>ST7000 Control Unit (Z082)</td>
<td>1. Service Procedures</td>
</tr>
<tr>
<td></td>
<td>2. Technical Information</td>
</tr>
<tr>
<td>ST7000 Course Computer (Z083, Z084)</td>
<td>1. Service Procedures</td>
</tr>
<tr>
<td></td>
<td>2. Technical Information</td>
</tr>
<tr>
<td>ST6000 System</td>
<td>1. Service Procedures</td>
</tr>
<tr>
<td></td>
<td>2. Technical Information</td>
</tr>
<tr>
<td>ST6000 Control Unit (Z124)</td>
<td>1. Service Procedures</td>
</tr>
<tr>
<td></td>
<td>2. Technical Information</td>
</tr>
<tr>
<td>ST6000 Course Computer (Z123)</td>
<td>1. Service Procedures</td>
</tr>
<tr>
<td></td>
<td>2. Technical Information</td>
</tr>
<tr>
<td>Type CR Interface Box (Z085)</td>
<td>1. Service Procedures</td>
</tr>
<tr>
<td></td>
<td>2. Technical Information</td>
</tr>
<tr>
<td>Rudder Reference Transducer (Z131)</td>
<td>Service Procedures</td>
</tr>
<tr>
<td>Fluxgate Compass Transducers (Z130)</td>
<td>Service Procedures</td>
</tr>
<tr>
<td>Fluxgate Compass Transducer (Z105)</td>
<td>Service Procedures</td>
</tr>
<tr>
<td>Rudder Reference Transducer (Z060)</td>
<td>Service Procedures</td>
</tr>
<tr>
<td>Masthead / Pushpit Windvane Transducers (Z080, Z087)</td>
<td>Service Procedures</td>
</tr>
<tr>
<td>Linear Drive Units (Z029, Z032, Z039, Z058, Z059)</td>
<td>Service Procedures</td>
</tr>
<tr>
<td>Rotary Drive Units (Z028, Z031, Z037)</td>
<td>Service Procedures</td>
</tr>
<tr>
<td>Hydraulic Drive Units (Z030, Z033, Z041, Z064, Z065, Z066, Z067, Z081)</td>
<td>Service Procedures</td>
</tr>
<tr>
<td>I/O Sterndrive Drive Unit (Z088)</td>
<td>Service Procedures</td>
</tr>
</tbody>
</table>
ST7000 Basic System

1. Service Procedures
Autohelm

ST7000 System Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2. System Description</td>
<td>3</td>
</tr>
<tr>
<td>3. Operating/Calibration Instructions.</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Operation</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Operating Hints</td>
<td>8</td>
</tr>
<tr>
<td>3.3 Additional Information for Sailing Vessels</td>
<td>10</td>
</tr>
<tr>
<td>3.4 Calibration</td>
<td>12</td>
</tr>
<tr>
<td>3.5 Fluxgate Compass - Automatic Deviation Correction</td>
<td>15</td>
</tr>
<tr>
<td>4. Common System Problems</td>
<td>16</td>
</tr>
<tr>
<td>5. Track Control Interfacing</td>
<td>17</td>
</tr>
<tr>
<td>5.1 Inverted Data</td>
<td>17</td>
</tr>
<tr>
<td>5.2 Conversion of Units</td>
<td>17</td>
</tr>
<tr>
<td>5.3 Alarm Messages</td>
<td>17</td>
</tr>
<tr>
<td>5.4 N.M.E.A. Input Format</td>
<td>18</td>
</tr>
<tr>
<td>6. Special Functions</td>
<td>19</td>
</tr>
<tr>
<td>6.1 Display of Software Version</td>
<td>19</td>
</tr>
<tr>
<td>6.2 Permanent Watch Alarm Mode</td>
<td>19</td>
</tr>
<tr>
<td>6.3 Display Test Mode</td>
<td>19</td>
</tr>
<tr>
<td>6.4 LCD Contrast Ratio Adjustment</td>
<td>19</td>
</tr>
<tr>
<td>7. Service Visit to a Vessel</td>
<td>20</td>
</tr>
<tr>
<td>7.1 Onboard Diagnostics</td>
<td>21</td>
</tr>
</tbody>
</table>
1. Introduction
The ST7000 system section of this manual contains full system operating instructions and service procedures for the installed autopilot. Further indepth diagnostics are available for each module in the relevant product sections.

2. System Description
The ST7000 is a modular autopilot system that can be built up to match the individual requirements of all vessels. A range of high efficiency Rotary, Linear, Inboard/Outboard and Hydraulic drive units are available to match all types of steering systems.

The ST7000 is SeaTalk compatible providing full data sharing with the Autohelm range of SeaTalk Instruments.

Early systems (pre March 90) were supplied with Z060, Z105 Rudder Reference and Fluxgate transducers. Later systems use the Z131 and Z130 transducers.

The ST7000 course computer can be used with all Seatalk compatible control units and will operate all of the following drive units:

- Z039 Linear Drive Type 1
- Z037 Rotary Drive Type 1
- Z041 Hydraulic Pump Type 1
- Z081 Hydraulic Pump Type 0
- Z088 I/O Sterndrive
- Z029 Linear Drive Type 2 (12v)
- Z058 Linear Drive Type 2 (12v) Short Stroke
- Z032 Linear Drive Type 2 (24v)
- Z059 Linear Drive Type 2 (24v) Short Stroke
- Z028 Rotary Drive Type 2 (12v)
- Z031 Rotary Drive Type 2 (24v)
- Z030 Hydraulic Pump Type 2 (12v)
- Z033 Hydraulic Pump Type 2 (24v)
- Z064 Type CR 3L/min (12v) via Z085 Interface Box
- Z065 Type CR 3L/min (24v) via Z085 Interface Box
- Z066 Type CR 4.5L/min (12v) via Z085 Interface Box
- Z067 Type CR 4.5L/min (24v) via Z085 Interface Box
Autohelm

3. Operating/Calibration instructions

3.1 Operation

<table>
<thead>
<tr>
<th>Auto</th>
<th>Automatic Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Push to engage automatic steering and maintain current heading.</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Previous Automatic Heading</td>
</tr>
<tr>
<td>Push and hold down for 1 second to return to previous automatic heading. (Display returns to Auto after 10 seconds).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Changes (—1, +1, —10, +10)</th>
<th>New Automatic Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Push to alter course to port (—) and starboard (+) in increments of 1 and 10 degrees.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standby</th>
<th>Current Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Push to disengage the autopilot for manual steering. (The previous automatic heading is memorised).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Track (see operating hints)</th>
<th>Automatic Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Push to select track control from Auto. Push again to return to automatic steering.</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Previous Automatic Heading</td>
</tr>
<tr>
<td>Push and hold down for 1 second to select previous track control heading from Auto or Track.</td>
<td></td>
</tr>
<tr>
<td>(Display returns to Track after 10 seconds).</td>
<td></td>
</tr>
</tbody>
</table>
Response

• **Response Level Adjustment** (see Operating Hints)
 Push to increase (▲) or decrease (▼) response level. To display response level without changing it push both Response keys together briefly.

• **Rudder Gain Adjustment** (see Operating Hints)
 Push and hold down for 1 second both Response keys together to display rudder gain level.

 Within 10 seconds push once to increase (▲) or decrease (▼) rudder gain.

 (Response and Rudder levels are displayed for 10 seconds only)

Illumination

Push and hold down Display for 1 second to switch on illumination.

Within 10 seconds push Display to select illumination level.

3 = High
2 = Medium
1 = Low
OFF = Off

(Illumination level is displayed for 10 seconds only)
Autohelm

Display Key Sequence

- **Cross Track Error***
 - Indicates direction to steer

- **Bearing to Waypoint***

- **Distance to Waypoint***

- **Watch Alarm** (not available in Standby)
 - To select Watch alarm push **Display** repeatedly until Watch appears.

 The 4 minute timer is now running:
 — After 3 minutes ‘Watch’ flashes on all control units.
 — After 4 minutes the alarm sounds on all control units.
 - Push **Auto** at any time to reset the timer to 4 minutes and silence the alarm.
 - To cancel the Watch alarm at any time push **Display**.

*Only displayed when waypoint information is transmitted to the control unit by a Radio Navigation System.
Warning Messages

• Off Course Alarm

—Sounds if the vessel deviates from the automatic heading by more than the selected amount for over 20 seconds.

• Low Battery Alarm

—Sounds if the course computer supply voltage falls below 11 volts for over 20 seconds.

• Track Mode Alarms

—Sounds if no waypoint data is received from the Radio Navigation System for over 20 seconds.

—Sounds if the data has the incorrect format or if an invalid flag is set.

Note: Push Standby to silence an alarm and select Standby mode.
3.2 Operating Hints
Response Level Adjustment
The ST7000 has three response levels which enable tighter course keeping to be achieved in certain cases:
Level 1— Automatic Sea State Control
Level 2— Automatic Sea State Inhibit
Level 3— Automatic Sea State Inhibit and counter rudder.
When the autopilot is switched on, the response level is set to 1. This provides the best compromise between power consumption and course keeping accuracy and is suitable for nearly all situations. Increasing Response level provides tighter course keeping at the expense of increased power consumption and general wear and tear. It is advisable to use the minimum response level necessary to achieve the desired course keeping accuracy. On larger power vessels level 3 can improve slow speed steering where the natural yaw damping of the vessel is reduced.

Note: Level 3 is not recommended for use at planing speeds or in rough seas.

Track
To make full use of Track control the following simple points should be observed:
• Always steer the vessel to within 0.1 n.m. of track and bring the heading to within 5° of the bearing to the next waypoint before selecting Track.
• Always check that there are no navigational hazards either side of the intended track.
• Always maintain an accurate log with regular plots to verify the computed position read from the Radio Navigation Receiver.
• Maintain a proper lookout at all times.

Automatic Trim
If Automatic Trim has been selected during calibration the ST7000 will correct for trim changes. This correction can take up to three minutes to apply the rudder offset necessary to restore the set automatic heading. Large course changes which change the apparent wind direction can produce large trim changes. In these cases the autopilot will not immediately assume the new automatic heading, and only settle onto course when the Automatic Trim has been fully established.
It is recommended the following procedure is adopted for large course changes:
• Note required new heading.
• Select Standby and steer manually.
• Bring vessel onto new heading.
• Select Auto and let vessel settle onto course.
• Bring to final course with 1° increments.
It is sound seamanship to make major course changes only whilst steering manually. In this way any obstructions or other vessels may be cleared properly and due account taken of the changed wind and sea conditions on the new heading prior to engaging the autopilot.

Rudder Gain Adjustment
The rudder gain level selected during initial sea trials will normally provide excellent steering performance over a wide range of conditions. However, it may be noticed that the autopilot tends to be a little less stable on northerly headings in the higher latitudes of the northern hemisphere (and conversely southerly headings in the southern hemisphere). This is caused by the increasing angle of dip of the earth’s magnetic field at higher latitudes, which has the effect of amplifying rudder response on northerly headings. The tendency towards northerly heading instability is usually more obvious in higher speed craft and when it occurs can be corrected by reducing the rudder control setting. At speeds in excess of 30 knots, a reduction of two levels can often be required on headings between 315° and 045° (northern hemisphere) or 135° and 230° (southern hemisphere).

CAUTION
On planing vessels improved course keeping at displacement speeds can sometimes be achieved by increasing the rudder gain level. If this is done, it must be decreased again before opening the throttle as oversteer can be extremely violent at planing speeds.
Unsatisfactory Steering Performance
If the ST7000 has been installed and set up in accordance with the instructions in the Installation Manual it will provide excellent steering performance over a wide range of conditions.

If performance drops but the autopilot is still working correctly, the following simple checks should find the fault:-
- Has a magnetic influence been introduced near the fluxgate compass? i.e. anchor, chain, radio equipment, loudspeaker, tools, generator etc. Check that the autopilot compass heading still corresponds with the steering compass.
- Are all fuses intact, circuit breakers engaged?
- Are all screw connections tight and free of corrosion.
- If the autopilot fails to hold course check the Rudder Gain level. Has it been changed from the initial sea trials level (check in Installation Manual)?
- If the vessel wanders check that the Rudder Reference Transducer linkage is secure with no free play.

Hydraulic Drive Units only:-
- Check that all unions are tight and bleed system to remove air.

Failure to Disengage
The mechanical drive actuators of the ST7000 are designed to ‘Fail Safe’ — When power is disconnected the drive unit will disengage leaving the steering system free for manual control.

When Standby is selected the actuator will Disengage leaving the steering free.

It is remotely possible that a fault could develop which could cause the actuator to remain engaged even when Standby is selected. If this happens:-
- DISCONNECT THE MAIN CIRCUIT BREAKER TO THE AUTOPILOT — THE STEERING WILL IMMEDIATELY BE FREE.
- OR
- IN AN EMERGENCY THE ACTUATOR CLUTCH CAN NORMALLY BE OVERRIDDEN BY TURNING THE STEERING WHEEL HARD.

It is emphasised that this fault is extremely unlikely and can be immediately corrected as described.

If preferred a separate Override switch can be fitted close to the steering position which will break the actuator clutch drive for Emergency Use.

Safety
Passage making under autopilot is a very pleasant experience which can lead to the temptation of relaxing permanent watch. This must always be avoided no matter how clear the sea may appear to be.

It is the responsibility of the skipper to ensure the safety of his vessel at all times by careful navigation and that all crew members are familiar with the procedures required to engage and disengage the autopilot.

When searoom is restricted, a crew member must be close to a control unit at all times if under Autopilot control.

On Power craft permanent watch should be maintained at the steering station when at speed with the Autopilot engaged.
Autohelm

3.3 Additional Information for Sailing Vessels

Autotack
The ST7000 has a built-in Autotack function which will turn the vessel through 100°. This operates in both compass and vane modes as follows:

Vane
- Push +1 and -1 -10 keys together to initiate a tack turning to Starboard.
- Push -1 and —10 keys together to initiate a tack turning to Port.

Note: It is important that the rudder angle transducer is accurately aligned as the Autotack function mirrors standing helm and any offset will change the initial tack angle.

Wind Trim
Wind Trim allows the autopilot to be supervised by apparent wind direction. The wind direction is read either:
- From the SeaTalk bus (requires Autohelm ST50 wind).
- OR
- Directly from a Masthead Transducer (Z080).
- OR
- From an NMEA 0183 input on the control unit.

Automatic Heading
Push both red keys together to select Wind Trim and maintain the current apparent wind angle.

Previous Automatic Heading
Push and hold down for 1 second both red keys together to return to the previous apparent wind angle.
Wind Change Alarm
Wind Trim uses the fluxgate compass as the primary heading reference and automatically adjusts the compass heading to maintain the original apparent wind angle. If changes in apparent wind angle adjust the original automatic heading by more than 15° the wind change alarm will sound.

—The alarm is silenced by pushing both red keys together briefly.

Display of Wind Angle
If the wind angle information is supplied using the NMEA 0183 input or SeaTalk bus, the apparent wind angle and tack sense (P & S) is added to the display menu and accessed via the Display button.

• Apparent Wind Angle

Using Wind Trim
It is important to understand that “Wind Trim” prevents over-reaction to gusts or sudden wind shifts. One minute is required to change the heading in response to a permanent change in apparent wind angle. Do not attempt to override the automatic sequence with the course change buttons. In gusty conditions sail a few degrees off the wind and pay frequent attention to sail trim and helm balance using the rudder angle indication. Performance will normally be improved by reefing headsail and mainsail a little early rather than too late.
Autohelm

3.4 Calibration

Recommended Settings
As supplied the ST7000 can be switched on and tested safely without any adjustments to the factory calibration settings. The table below lists the suggested settings for sailing and power displacement and planing power vessels. These will provide good performance for initial sea trials and can be fine tuned later to optimise performance.

<table>
<thead>
<tr>
<th>Vessel Type</th>
<th>Displacement</th>
<th>Planing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory preset</td>
<td>Set to</td>
<td></td>
</tr>
</tbody>
</table>

- Rudder Gain (level) | 5 | 2 |
- Rate Gain (level) | 2 | 1 |
- Rudder Angle Limit (degrees) | 30 | 30 |
- Turn Rate Limit (degrees/sec) | 20 | 5 |
- Cruise Speed (knots) | 8 | 25 |
- Off Course Alarm (degrees) | 20 | 20 |
- Trim Level | 1 | 1 |

Selecting and Exiting from Calibration Mode
To select calibration mode:-
- Push Standby.
- Push and hold down for 2 seconds, Track and Display together.

Rudder Position
Deadband (level)
See 3.7

To exit calibration mode at any point.

a) Saving any changes made:-
- Push and hold down for 2 seconds, Track and Display together.

b) Ignoring any changes made:
- Push Standby.
Adjusting Calibration
In calibration mode, the display button is used to scroll through the menu. The displayed value is adjusted using the Response buttons (hold button down for fast scroll).

- Rudder Gain, levels 1 to 9, (see 5.5)
- Rate Gain, levels 1 to 9, (see 5.6) (Counter Rudder).
- Rudder Angle Limit, 15 to 40 (see 3.6).
- Rate of Turn Limit, 2 to 20°/sec.
- Cruise Speed, for Track mode operation, 4 to 60 knots.
Autohelm

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.

- Automatic Trim, (see 5.4).

- Off-Course Alarm, 15 to 40° angle.

- Manual Steering Lever Type.
3.5 Automatic Deviation Correction
The ST7000 will correct the fluxgate compass for any deviating magnetic fields. This should be carried out in calm conditions preferably in flat water.

- To select compass adjust Push and hold Standby for 1 second.

- Keeping boat speed below 2 knots, turn the vessel slowly so that it takes at least 3 minutes to complete 360°. Keep turning until the display changes to show the amount of deviation the autopilot has corrected:

![Deviation Display](image)

Note: If the amount exceeds 15°, it is recommended the fluxgate should be re-sited.

- Use the course change buttons to adjust the displayed heading until it agrees with the steering compass or a known transit bearing.

Note: 000° is always followed by OFF. This will suppress the display of compass and automatic headings on the control unit.

- To exit compass adjust and store the compass settings push and hold Standby for 1 second.

- To exit compass adjust without saving any new settings push Standby momentarily.
4. Common System Problems

Problem	Cause	Solution
--		--
System displays ‘Manual’ mode instead of ‘Standby’ on power up.	Early systems had poor colour definition on terminal boards. Blue and Green connections to the Fluxgate are reversed.	Reverse Blue and Green connections on Fluxgate.
System will not pick up N.M.E.A. data from a suitable receiver.	Early systems with software issues prior to 66E (Z083/084) and 66C (Z082) were not fitted with Nav software.	Replace software in both Course Computer and Control unit with latest versions if pre 66E or 65C (Both software issues can easily be checked by pressing +10 and -10 degree course change keys together for 2 seconds.
System displays ST 7000 for 2 sec's followed by ‘NO LINK’.	Seatalk Bus non operational.	Cabling error between control units and Course Computer.
System displays ‘GYRO’ mode instead of ‘STANDBY’ on power up.	Wind Anemometer connected to pilot.	Remove yellow connection from AUX 1.
System displays maximum rudder angle on power up regardless of rudder position.	Early systems had poor colour definition on terminal boards. Blue and green connections to the rudder reference are reversed.	Reverse Blue and Green connections on rudder reference.
System displays ‘ST7000’ or ‘STANDBY’ when Auto is engaged.	Inrush currents on the power amplifier reset either the Control unit or the Course Computer Microprocessor.	Add C6 (100uF capacitor) to the power amplifier PCB. Systems from S/N 890040 on have this mod incorporated.
5. Track Control interfacing.

In most cases interfacing the ST7000 to either a GPS, Decca, Loran or Satellite Navigation system is a simple and straightforward task, so long as the requirements set out in section 6 of the installation manual are met. There are however a few exceptions:

5.1 Inverted Data.
Some receivers, notably some of the Furuno range and early Navstar models, transmit data in an inverted format with respect to 5V. This is easily seen as the data line will idle high with respect to 0V in between data transmissions. In these cases the NMEA cable on the rear of the control unit must be wired with the red wire connected to 5V, (this is normally available on the receiver terminal block), and the blue wire connected to the data line.

5.2 Conversion of Units.
The Control Unit will convert all units of distance to Nautical Miles. Therefore, any receivers displaying Cross Track Error or Distance To Waypoint in either Kilometres of Statute miles etc will have their data displayed on the Control Unit in Nautical Miles.

5.3 Alarm Messages.
Track mode has 3 alarm messages:-

1. No Data If a standard N.M.E.A sentence is not received by the ST7000.
2. Data Error The ST7000 has recognised the incoming data as N.M.E.A but has detected an invalid flag. This is normally due to poor signal strength at the receiver.
3. Large XTE Cross Track Error greater than 0.3NM.

Errors 1 and 2 can provide valuable information as to where an installation problem might lie. The ‘NO DATA’ message indicates the ST7000 is not receiving N.M.E.A data due to either the receiver output not being enabled or more likely a wiring error between the receiver and the pilot. The ‘DATA ERROR’ message indicates the ST7000 is receiving data recognised as N.M.E.A but has an invalid flag set. This is normally due to the receiver having a low signal strength or a high noise figure.
5.4 Autohelm 7000 N.M.E.A 0183 Data input Format.
The 7000 must receive Cross Track Error data at least once every 30 seconds. If a display of Waypoint bearing and distance is required then this information must be received at least once every 30 seconds. All N.M.E.A data is read into a buffer thus enabling the 7000 to cope with delays between characters and delays between sentences. All Talker Identifier characters, i.e. RA, DE, LC etc. are ignored allowing interface with any type of equipment so long as the sentence type is one of the following:-

<table>
<thead>
<tr>
<th>Track Control</th>
<th>Bearing to Waypoint</th>
<th>Distance to Waypoint</th>
<th>Apparent Wind Speed & Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTE</td>
<td>APB</td>
<td>WDR</td>
<td>VWR</td>
</tr>
<tr>
<td>XTR</td>
<td>BPI</td>
<td>WDC</td>
<td></td>
</tr>
<tr>
<td>APA</td>
<td>BWR</td>
<td>BPI</td>
<td></td>
</tr>
<tr>
<td>APB</td>
<td>BWC</td>
<td>BWR</td>
<td></td>
</tr>
<tr>
<td>RMB</td>
<td>BER</td>
<td>BWC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEC</td>
<td>BEC</td>
<td></td>
</tr>
</tbody>
</table>

Apparent Wind Speed and Angle can be received from any external equipment transmitting the N.M.E.A. VWR header. The ST7000 will only display apparent wind direction but will convert and retransmit both apparent wind speed and apparent wind direction on the Seatalk bus. This information can then be displayed on an ST50 wind instrument acting as a repeater.
6. Special functions.

6.1 Display of Software Version
It is possible to display the version number of both Course Computer and Control Unit software installed in a particular system. This is achieved by pressing both the +10 and -10 keys together for 2 seconds and releasing. The display will show the Control Unit Version (65 followed by Issue Level) for 10 seconds, followed by Course Computer Version (66 followed by Issue Level). The pilot must be in standby mode at the time. Each version is displayed for 10 seconds before the pilot reverts to standby. A software history for each product is shown in the relevant Service Section.

6.2 Permanent Watch Alarm Mode.
The ST7000 autopilot can be set up in a permanent watch alarm mode, as required by the Sea Fish Industry Authority (S.F.I.A).
It must be stressed that the selection of this mode is permanent and can only be reversed by returning the Course Computer to Nautech.
Permanent Watch Alarm is achieved by first entering the calibration menu. Once in calibration, regardless of display message, press the Auto, Standby, and Track keys together for 1 second before releasing. The display will now show ‘SELECT WATCH’. The user now has 10 seconds to select permanent watch alarm mode by again pressing Auto, Standby and Track together for 1 second. The display will then show ‘WATCH ON’ for 10 seconds before reverting back to ‘CAL’. A normal exit from calibration mode must now be executed.

6.3 Display Test Mode.
All display segments on the control unit can be switched on by pressing the +10, -10, Standby and Display keys together. This mode can only be accessed after the unit has been powered up with the yellow SeaTalk data wire open circuit. (This is best disconnected in the Course Computer Connector box (Bus 1 and Bus 2).)

6.4 LCD Contrast Ratio Adjustment.
In certain circumstances, it may be necessary to adjust the contrast ratio of the Z082 Control Unit LCD. This procedure is detailed in Section 4 of the Z082 Control Unit Section.
7. Service visit to a vessel.

When a service visit to a vessel is made the most common fault encountered is likely to be poor connections or inadequate power supplies. These should be thoroughly checked before the Service visit diagnostic procedure is carried out. When trying to locate a fault it should be remembered that most failures will occur in the Course Computer with the Control Units as the next most likely. It should be noted that the calibration variables and auto deviation correction will require re-setting if the Course Computer, Course Computer Software or its PCB are exchanged. A procedure for carrying out this operation is given in section 3. Always note the Course Computer calibration settings before removing from the vessel.
7.1 Service Visit - Diagnostic Procedure
On arrival check for bad connections (corroded connector pins, loose connectors etc) and for inadequate power supplies. If the system still exhibits a fault, then use the diagnostic procedure outlined below. Once the faulty module has been detected refer to the relevant Product Section for detailed service information.
Z082 Control Unit

1. Service Procedures
Autohelm

Contents

1. Description 3
2. Dismantling 3
3. Re-assembly 3
4. Display Contrast Adjustment 4
5. Functional Test 7
6. Product History 9
7. Software History 9
8. Spares Numbers 9

Illustrations

Fig. 1. Z082 Control Unit General Assembly 5
Fig. 2. LCD/Diffuser Assembly 6
1. Description
The Z082 Control Unit is SeaTalk compatible and consists of a single PCB built using surface mount technology. It can be used with both 12V and 24V SeaTalk Course Computers. The unit can also be functionally tested without the use of special equipment using the procedure outlined in figure 3.

2. Dismantling (ref fig 1.)
Note: To prevent damage to the printed face of the unit all work should be carried out on a flat surface covered in foam rubber. A conductive surface will prove beneficial in helping to prevent dust accumulation caused by static on the workbench.
1. Unscrew and remove the 6 case securing screws from the rear cover. Push each cable loom assembly back through its grommet so as to obtain working clearance to the PCB (fig 1).
 Note: Failure to push the cables back to ease removal may damage the cable to PCB assembly. If cables are very tight in grommets apply a small smear of silicon grease to outer sheath, (grease can be wiped off after reassembly).
 If removing the PCB assembly, it will be necessary to de-solder the cables from the PCB. Great care should be exercised when de-soldering so as not to damage the pads on the PCB.
2. Unscrew and remove the 10 screws which secure the PCB to the facia.
 Note: Do not at this stage remove the screws which secure the LCD assembly to the PCB. (fig 2.).
3. Before removing the LCD ensure that lint free and preferably anti static finger cots are worn to prevent the LCD or elastomers getting dirty or greasy.
4. Unscrew and remove the 8 LCD housing retaining screws, (fig 2.). Be careful to hold the LCD surround, LCD, and diffuser when dismantling. Lift away from the PCB and store carefully.
3. Reassembly
Reassembly is a straight reversal of the above procedure but note the following points:
1. Note the correct orientation of the various looms and core colours to the PCB pads (fig 1).
2. Ensure the LCD is correctly orientated relative to the PCB (fig 2).
3. Ensure the diffuser is correctly orientated relative to the LCD and PCB (fig 2).
4. Always ensure the board is tightened down sequentially to ensure the load is evenly spread.
5. When finally refitting the cover to the facia ensure that the cover is in the correct position relative to the cables and pull the cables back through the grommets as the cover is lowered onto the facia. Wipe off any excess grease from the cable sheaths.
6. Use only hand screwdrivers for reassembly to ensure screws are not over tightened and elastomers are compressed uniformly. Rotate screws anticlockwise to locate in the thread before tightening.
7. Re-check for full function after reassembly to check the LCD has not been damaged or looms incorrectly soldered.

4. Display Contrast Adjustment
The Display Contrast on the Z082 Control Unit can be manually adjusted to suit installations where the LCD is normally viewed from significantly above or below, or when a replacement LCD with different drive characteristics has been fitted.
1. Remove power from the unit.
2. Unscrew the mounting thumb nuts and ease the Control unit forward from its mounting position.
3. Unscrew and remove the 6 case screws from the rear cover. Push each cable loom back through its grommet so as to obtain working clearance to the PCB (fig 1). Note: If cables are tight in grommets then apply a small smear of grease to the outer sheath, (grease can be wiped off after reassembly).
4. Re-connect power.
5. View Control unit from normal operating angle.
6. Adjust vrl, (see figure 1 for location) to obtain optimum display legibility.
7. Refit the cover to the facia ensuring correct positioning relative to the cables. Pull the cables back through the grommets as the cover approaches the facia.
8. Secure Control unit in its original position.
Note: Use only hand screw drivers to reassemble to ensure screws are not over tightened.
Control Unit General Assembly (Z082)

Fig. 1.
Autohelm

LCD Display Assembly

Fig. 2.
5. Functional Test

Connect 0v to Screen
Connect 12v to Red Core
Yellow Core open Circuit

Tone sounds at Switch On?

YES

Does display show ST7000 followed, after 2 seconds with NO LINK?

YES

Do all pushbuttons sound when pressed?

YES

Press +10, -10, Standby and Display together

Faulty PCB assembly

Faulty PCB assembly

Faulty pushbutton

Fig 3.

SeATalk Service Manual 7
A

Do all LCD segments come on

YES

Faulty PCB assembly

NO

Control Unit correct
6. Product History (Z082)

<table>
<thead>
<tr>
<th>Change</th>
<th>Serial Number</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Start</td>
<td>290001</td>
<td></td>
</tr>
<tr>
<td>Track Compatibility</td>
<td>690075</td>
<td>When used with a Track Compatible Course Computer</td>
</tr>
<tr>
<td>White Back Light diffuser</td>
<td>890007</td>
<td></td>
</tr>
<tr>
<td>introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protective Cover supplied with</td>
<td>100001</td>
<td></td>
</tr>
<tr>
<td>unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeaTalk Cable supplied with unit</td>
<td>300056</td>
<td></td>
</tr>
</tbody>
</table>

7. Software History (Z082)

<table>
<thead>
<tr>
<th>Version</th>
<th>Change</th>
<th>Course Computer Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Initial release (S/No. 290001)</td>
<td>All versions</td>
</tr>
<tr>
<td>C</td>
<td>Track function added, Rudder Angle display</td>
<td>All versions but must be used with a track</td>
</tr>
<tr>
<td></td>
<td>updates at a faster rate. (S/No. 690075)</td>
<td>compatible Course Computer if the track function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is required.</td>
</tr>
</tbody>
</table>

8. Spares Numbers - Control Unit (Z082)

<table>
<thead>
<tr>
<th>Item</th>
<th>Catalogue No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Skin</td>
<td>Q003</td>
<td>Allows Control Unit to be mounted on up to 4" thick</td>
</tr>
<tr>
<td>mounting kit</td>
<td></td>
<td>bulkheads</td>
</tr>
<tr>
<td>PCB Assembly</td>
<td>Q004</td>
<td>No LCD included</td>
</tr>
<tr>
<td>LCD</td>
<td>Q026</td>
<td></td>
</tr>
<tr>
<td>White Backlight</td>
<td>Q023</td>
<td></td>
</tr>
<tr>
<td>Diffuser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protective Cover</td>
<td>D122</td>
<td></td>
</tr>
</tbody>
</table>
Autohelm
2. Technical Information

Contents

1. Circuit description 2
 1.1 Power Supply 2
 1.2 Microprocessor and Program Memory 2
 1.3 LCD and Display Driver 2
 1.4 Negative Rail Generator 2
 1.5 N.M.E.A. Interface 2
 1.6 Seatalk Bus Transmit and Receive 2
 1.7 Keypad Operation 3
 1.8 Buzzer Operation 3
 1.9 Illumination Drive 3

Illustrations

- Fig.1. Circuit Diagram 5
- Fig.2. PCB Assembly/Parts List 7
1. Control Unit PCB Circuit Description

1.1 Power Supply
Incoming power is routed to the PCB via PL1 and SKT1. D4 and D20 protect against reverse connection of the supply. IC1 is a 5V regulator and can also reset the microprocessor, via TR1, should the supply voltage fall below approximately 6V.

1.2 Microprocessor and Program Memory
IC6 is an Intel 80C32 microprocessor. It can access up to 32k bytes of program memory (IC5) via the latch IC4. A clock signal for the microprocessor is provided by an 11MHz ceramic resonator (XL1), and associated capacitors C7 and C8. Capacitors C6, C9 and C10 provide decoupling.

1.3 LCD and Display Driver
The LCD is a Nautech custom part. The display is driven by a Hitachi LCD driver (IC3) deriving its drive voltages from resistor chain R24-R27 and VR1. Communication to the microprocessor is via a 4 bit parallel bus (DB4 to DB7) and the three control lines E, R/W and RS. Capacitors C18 and C22 provide decoupling and resistor R44 the clock signal for IC3.

1.4 Negative Rail Generator
A negative voltage rail is required by the LCD display and is generated by a switching regulator formed by TR11, D10 and D21. A 4.8KHz waveform is generated from the microprocessor P3.4 (pin no. 16). This drives a charge pump, via transistor TR11, pumping charge from C19 via D10 and C20. The negative rail is then stabilised by D21 and R60.

1.5 N.M.E.A Interface
NMEA data is fed to the control unit via PL2 and isolated from the rest of the circuit using the opto-isolator (IC7). Diode D1 provides input reverse connection protection and resistor R35 is tuned to give the desired bandwidth of operation. The output from IC7 is connected to the microprocessor Port P3.2 (pin 14). Capacitor C21 provides decoupling.

1.6 SeaTalk Bus Transmit and Receive
SeaTalk transmit and receive circuitry consists of TR5, 6, 7, 8, 9, 14 and 15 and their associated components. Data transmission is at 4800 band with a low start bit and line idling high. TR7 and TR8 provide high and low drive respectively, whilst TR14 and R57 give overload protection to TR8 in the event of misconnection. TR5 and TR6 allow the microprocessor to monitor its own transmissions and also to receive data from other units on the bus.
1.7. Keypad Operation
The 10 button key pad is configured in a 4*3 matrix and connected to the microprocessor P1.0 and P1.6 (pins 2 to 8). Each key is diode isolated to enable multiple key presses to be decoded.

1.8. Buzzer Operation
TR2 and TR3 are configured as an astable multivibrator with a nominal frequency of 2.7KHz. TR4 is used to switch the buzzer with TR13 acting as an invertor to turn the buzzer off during a micro-processor reset.

1.9. Illumination Drive
TR10, 12 and 16 provide a constant current drive for lamps LP1, LP2, LP3 and LP4. The current is set by resistors R56 and R62. TR12 is an inverting buffer to turn off the lights during a microprocessor reset. Illumination levels are given by pulse width modulation of drive line P3.3 (pin 15 of IC6).
NOTES

1. ALL SURFACE MOUNT CAPACITORS AND RESISTORS TO HAVE NICKEL BARRIER SOLDER PLATED TERMINATIONS

2. ITEM 4 (15036) TO BE SANDWICHED BETWEEN ITEM 5 (15039) AND PCB TO INSULATE HEATSINK FROM 5V TRACK CONNECTED TO IC 1 (PIN 2)

3. ITEM 6 (15085) TO LIE FLAT ON P.C.B. AS SHOWN.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QR PART</th>
<th>QTY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>DR:</td>
<td>1</td>
<td>LCD DISPLAY DRIVER KS0062 (SAMSUNG)</td>
</tr>
<tr>
<td>46</td>
<td>DR:</td>
<td>1</td>
<td>LCD DISPLAY DRIVER HD44780 (HITACHI)</td>
</tr>
<tr>
<td>45</td>
<td>DR:</td>
<td>1</td>
<td>TRANSISTOR BC557 NPN TO BE ASSEMBLED WITH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAXIMUM LEAD LENGTH =4MM</td>
</tr>
<tr>
<td>44</td>
<td>EITHER</td>
<td>1</td>
<td>TRANSISTOR SOT89 BC558 NPN TR16</td>
</tr>
<tr>
<td></td>
<td>PLUS</td>
<td></td>
<td>VS1</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>10</td>
<td>LED F1 & F2 CLICKER 0KK-245X5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>030, 060, 090, 120, 150, 180, 210</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>1</td>
<td>CHIP TRIMMER RESISTOR 1K MURATA</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>1</td>
<td>OPTO ISOLATOR 6N139 LEADS TO BE FORMED FOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUTT JOINT CONNECTION (USAGE: OPTION 100)</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>1</td>
<td>MICRO ROM 12C932 12MHz FILOX</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>1</td>
<td>CMOS LATCH 74HC373</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>1</td>
<td>VOLTAGE REGULATOR LM350</td>
</tr>
<tr>
<td>37</td>
<td>TRANSISTOR SOT 23 BC817NPN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TR10, TR11, TR12, TR13, TR14, TR15</td>
</tr>
<tr>
<td>36</td>
<td>DIOE SOT 23 BAV26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D1, D7, D13, D16</td>
</tr>
<tr>
<td>35</td>
<td>DIOE SOT 23 BAV95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2, D10, D11</td>
</tr>
<tr>
<td>34</td>
<td>DIOE SOT 23 BAS 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D12</td>
</tr>
<tr>
<td>33</td>
<td>DIOE SOT 23 BAS 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D13, D14, D15</td>
</tr>
<tr>
<td>32</td>
<td>DIOE SOT 23 BASF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D16, D17, D18</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>1</td>
<td>TRANSISTOR SOT 23 BC137 TANK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1050F, 2050F, 3050F, 5050F, 1050F, 2050F, 3050F</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1</td>
<td>0.05F CAPACITOR 0.05F ±10% 50V X7R</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>2</td>
<td>0.05F CAPACITOR 0.05F ±10% 50V X7R</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>3</td>
<td>0.05F CAPACITOR 0.05F ±10% 50V X7R</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>1</td>
<td>0.05F CAPACITOR 0.05F ±10% 50V X7R</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>1</td>
<td>ELECTROLYTIC CAPACITOR 100uF ±5% 5.5V MIN 5.5 MAX C3</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>0.1uF CAPACITOR 0.1µF ±20% 50V X7R</td>
</tr>
</tbody>
</table>

Fig. 2

Z082 Control Unit PCB Assembly/Parts List

SeaTalk Service Manual

ISS S
Z084 Course Computer (24V) & Z083 Course Computer (12V)

1. Service Procedures
Contents

1. Description 3
2. Dismantling 3
3. Re-assembly 4
4. Functional Test 7
 4.1 Bench Test (stage 1) 8
 4.2 Bench Test (stage 2) 14
 4.3 Bench Test (stage 3) 15
5. Product History 16
6. Software History 16
7. Spares Numbers 16

Illustrations

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1. Course Computer General Assembly</td>
<td>5</td>
</tr>
<tr>
<td>Fig. 2. Power Amplifier General Assembly</td>
<td>6</td>
</tr>
</tbody>
</table>
1. **Description**

The ST7000 course computer is SeaTalk compatible and consists of 2 PCB's, a course computer and power amplifier. The course computer, which is built using surface mount technology, contains a microprocessor and various analogue interface circuitry. The power amplifier provides the motor drive, protection relays and 24V to 12V regulator (24V systems). This PCB is identical to that used on the Autohelm 6000 type 2 pilots (Z051 and Z052) and uses conventional through hole components. The two PCB’s are connected together via a 16 way ribbon cable. The same computer PCB is used on both 12V and 24V systems. The power amplifier PCB is built to two standards, one for 12V systems, and a second, which includes a 24V to 12V regulator, for 24V systems. A single design of terminal board is used for all drive applications. This PCB has no active components and should be visually checked if suspected faulty. Note:

If the course computer or its PCB are replaced, calibration values previously altered from the factory settings will require re-setting. Also the Fluxgate Compass will require re-linearising (auto deviation correction). Both of these procedures are outlined in the 7000 system section.

2. **Dismantling** (reference figures 1 & 2)

1. Unscrew and remove 2 countersunk screws securing lid on terminal box section and lift off.
2. Unscrew and remove 2 thumb nuts securing extrusion assembly to terminal box unit and pull extrusion assembly away from terminal box.
3. **Course Computer PCB**
 - If servicing course computer PCB, unscrew and remove 4 pan head screws securing the connector cover moulding to the extrusion and slide out cover and PCB assembly. Disconnect power amp PCB loom and lift away the PCB assembly. If necessary, remove the PCB from the moulded cover by unscrewing the 2 countersunk screws and nuts which fix the ‘D’ connector flange to the moulding.
4. **Power Amplifier PCB**
 - Repeat steps 1 to 3 but do not remove the computer PCB from the cover. Disconnect the 16 way loom from the computer PCB and remove the plastic covers from the power transistors. Un螺丝 all pan head screws and retain the shakeproof washers where fitted. Lift out all transistors. Slide PCB out of extrusion from the open end. Retain the insulators and caps fitted to the securing lugs on the PCB.
5. **Terminal PCB**
 - If servicing the terminal PCB, repeat steps 1 and 2. Remove the terminal PCB from the terminal box by removing the 2 nuts securing the ‘D’ connector to the terminal box, and the 2 securing screws at the front of the PCB, and remove the PCB assembly.
3. Re-assembly
In all cases re-assembly is a reversal of the dismantling procedures above, but note:-
1. Ensure correct orientation of power amp PCB loom when reconnecting to the computer PCB. Ensure a loom clip is fitted to the ribbon cable connector.
2. Ensure that insulating caps are all in place before sliding the power amp PCB back into the extrusion. Ensure that the silpads are fitted between the transistors and the extrusion.
3. Ensure that the correct transistor type is placed at each location. (Fig. 2).
4. Ensure that transistor/PCB securing screws are not loose, but do not over tighten.
ST7000 Course Computer General Assembly Z083-12V and Z084-24V

Fig. 1.
ST7000 Course Computer (Z083, Z084) - Power Amp PCB Assembly

Fig. 2.
4. Functional Test
The Course Computer can be functionally checked by using the following procedure.
Pre checked equipment required:-

- SeaTalk Control Unit (Z082)
- Fluxgate Compass (Z105)
- Pushpit Vane Transducer (Z087)
- Rudder Reference Transducer (Z060)
- Terminal PCB (Q006)
- Terminal Block
- Multimeter
- Motor for Z083 (12V) (N002)
- Motor for Z084 (24V) (N003)
- Power Supply (min rating 20A)
- SeaTalk Cable (D131)

Procedure:
a) Connect all units to course computer and terminal board PCB.
b) Position the rudder reference transducer arm diametrically opposite the cable gland.
c) Connect 12V (Z083), 24V (Z084) electronic and heavy duty supplies (do not switch on).
d) Start at Bench Test Stage 1. The procedure will determine if the course computer is faulty or correct and in most cases will also identify the nature of the fault and corrective action required. Some faults require further investigation and this is covered in stage 2 and stage 3.
4.1 Course Computer Bench Testing (Stage 1)

Switch on

Does control unit sound tone?

YES

Does control unit display ST7000 for 2s and then display 'Standby' and Current compass heading?

NO

Go to stage 2

YES

Does compass reading change as compass is rotated?

NO

Replace Computer PCB

YES

Connect meter +ve to clutch +ve
Connect meter -ve to clutch -ve

YES

Does meter read Ov?

NO

A

YES
Press -10° three times

Motor runs?

Motor stops within 10 seconds?

Replace Computer PCB

YES

Press 'Standby'. Select Drive level 3 via the calibration menu

Press 'Standby' and 'Auto' together

Does Display indicate windvane mode?

NO

Replace computer PCB

YES

C
Press 'Standby'

Move rudder reference arm 30° anti-clockwise

Does rudder angle display show approximately 30° starboard rudder

YES

Move rudder reference arm 60° clockwise

Does rudder angle display show approximately 30° port rudder

NO

YES

Replace computer PCB
Disconnect motor.
Connect meter across alarm output

Press 'Auto'

Does meter read 0v?

NO

YES

Press +10 4 times

Replace computer PCB
Does meter read >10v after 120 secs.?

- **NO**
 - Repeat previous test with meter connected across alarm 2
 - Replace computer PCB

- **Course computer, OK**
4.2 Course Computer Bench Testing (Stage 2)

1. Proceeding from stage 1 bench testing, remove the four screws retaining the computer PCB cover assembly and slide the PCB clear of the extrusion. Do not disconnect the loom.

- Connect meter +ve to Bus 1 or Bus 2 (Red Dot).
- Connect meter -ve to -ve output on Bus 1 or Bus 2 (White Dot).

Does meter read 12v?

- NO

- Connect meter +ve to PL2/16
- Connect meter -ve to PL2/6

Does meter read 12v?

- NO

- Power Amp PCB faulty replace

- Computer PCB faulty replace
4.3 Course Computer Bench Testing (Stage 3)
Proceeding from stage 1 bench testing, remove 4 screws retaining the computer PCB cover assembly and slide the PCB clear of the extrusion. Do not disconnect the loom.

- Press 'Standby' Connect meter across PL2/1 and PL2/3. Check drive level in calibration menu is set to 1

- Press 'Auto' then press '+10'

- Does motor run?
 - NO
 - YES

- Does motor stop within 10 secs
 - NO
 - YES

 - Repeat test, but driving motor in the other direction by pressing '-10'
 - NO

- Does meter read > +/-0.25v
 - NO
 - YES

 - Connect meter +ve to PL2/5. Connect meter -ve to PL2/6
 - NO

- Does meter read >10v?
 - NO
 - YES

 - Computer PCB faulty. Replace

 - Power Amplifier PCB faulty. Replace
5. Product History Course Computer (Z083 & Z084)

<table>
<thead>
<tr>
<th>Change</th>
<th>Serial Number</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Start</td>
<td>290001</td>
<td></td>
</tr>
<tr>
<td>Track Function Introduced</td>
<td>590206</td>
<td>Must be used in conjunction with a Control Unit capable of supporting the Track function</td>
</tr>
<tr>
<td>Capacitor 'C6' (100µf) fitted to power amplifier board</td>
<td>890040</td>
<td>Cures occasional system reset to Standby mode when initially engaging Auto after power up.</td>
</tr>
</tbody>
</table>

6. Software History (Z083 & Z084)

<table>
<thead>
<tr>
<th>Version</th>
<th>Change</th>
<th>Control Unit Compatibility</th>
<th>S/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Initial release</td>
<td>All versions</td>
<td>290001</td>
</tr>
<tr>
<td>D</td>
<td>Auto Seastate problem cured</td>
<td>All versions</td>
<td>490081</td>
</tr>
<tr>
<td>E</td>
<td>Track function added</td>
<td>All versions. If Track keeping algorithm is required then control unit must also be Track Compatible</td>
<td>590206</td>
</tr>
<tr>
<td>G</td>
<td>Trim function Improved</td>
<td>All versions</td>
<td>500256</td>
</tr>
</tbody>
</table>

7. Spares Numbers - Course Computers (Z083 & Z084)

<table>
<thead>
<tr>
<th>Item</th>
<th>Catalogue No.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Unit terminal PCB assembly</td>
<td>Q006</td>
<td></td>
</tr>
<tr>
<td>Course Computer PCB assembly</td>
<td>Q007</td>
<td></td>
</tr>
<tr>
<td>Power Amplifier PCB assembly (Z083)</td>
<td>M062</td>
<td>12v version</td>
</tr>
<tr>
<td>Power Amplifier PCB assembly (Z084)</td>
<td>M063</td>
<td>24v version</td>
</tr>
<tr>
<td>PNP Power Transistors (2offMJ11029)</td>
<td>L010</td>
<td></td>
</tr>
<tr>
<td>NPN Power Transistors (2offMJ11028)</td>
<td>L009</td>
<td></td>
</tr>
</tbody>
</table>
2. Technical Information

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Circuit Description (Course Computer PCB)</td>
<td>2</td>
</tr>
<tr>
<td>1.1 Power Supplies</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Microprocessor and Program Memory</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Analogue to Digital Converter</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Clutch Drive</td>
<td>3</td>
</tr>
<tr>
<td>1.5 SeaTalk Bus Transmit and Receive</td>
<td>3</td>
</tr>
<tr>
<td>1.6 Fluxgate Drive</td>
<td>3</td>
</tr>
<tr>
<td>1.7 E2prom</td>
<td>3</td>
</tr>
<tr>
<td>1.8 Supply Voltage Monitor</td>
<td>3</td>
</tr>
<tr>
<td>1.9 Alarm Drive</td>
<td>3</td>
</tr>
<tr>
<td>2. Circuit Description (Power Amplifier PCB)</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Voltage Regulator (24V) Systems only</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Reverse Connection Protection</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Bridge Amplifier</td>
<td>4</td>
</tr>
</tbody>
</table>

Illustrations

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>Course Computer PCB Circuit Diagram</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>Course Computer PCB Assembly/Parts List</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>Power Amplifier PCB Circuit Diagram (12V and 24V)</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>Power Amplifier PCB Assembly/Parts List (Z083 12V)</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>Power Amplifier PCB Assembly/Parts List (Z084 24V)</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>Terminal PCB Circuit Diagram</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>Terminal PCB Assembly</td>
</tr>
</tbody>
</table>
1. Course Computer PCB Circuit Description;
Circuit diagram Fig. 1.
PCB assembly/parts list Fig. 2.

1.1. Power Supplies
Incoming power is routed to the PCB via the 'D' connector plug PL1. VI provides suppression against any voltage spikes present on the incoming DC supply whilst D6 protects against reverse connection of the supply. 1C 1 is a 5V regulator and can also reset the microprocessor, via TR9, should the supply voltage fall below 6V. TR17, C19, D13, R92 and R91 form an 8V regulator to supply the windvane.

1.2. Microprocessor and Program Memory
IC2 is an Intel 80C32 microprocessor. It can access up to 32k bytes of program memory (IC7) via the latch IC6. A clock signal for the microprocessor is provided by an 11 MHz ceramic resonator (XL1) and associated capacitors C15 and C16. C14, 18 and 17 provide decoupling.

1.3. Analogue to Digital Converter
IC3,4,5 and 9 form a software driven analogue to digital converter. IC3 and IC9 are 8 channel multiplexed analogue switches routing all analogue signals, (see table below), through to IC4 which is configured as an integrator. C9 is discharged at a constant rate triggering the comparator IC5 as it reaches a level of approximately 0.53V. The output of the comparator is connected to the microprocessor thus measuring the discharge time which is proportional to the analogue input.

Analogue Channels:--
<table>
<thead>
<tr>
<th>IC3</th>
<th>Channel 0</th>
<th>Reset integrator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Channel 1</td>
<td>Integrator discharge signal</td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td>Fluxgate sense A</td>
</tr>
<tr>
<td></td>
<td>Channel 3</td>
<td>Fluxgate sense B</td>
</tr>
<tr>
<td></td>
<td>Channel 4</td>
<td>Motor Feedback 1</td>
</tr>
<tr>
<td></td>
<td>Channel 5</td>
<td>Motor Feedback 2</td>
</tr>
<tr>
<td></td>
<td>Channel 6</td>
<td>Windvane sense 1</td>
</tr>
<tr>
<td></td>
<td>Channel 7</td>
<td>Windvane sense 2</td>
</tr>
<tr>
<td>IC9</td>
<td>Channel 0</td>
<td>Alarm sense 1</td>
</tr>
<tr>
<td></td>
<td>Channel 1</td>
<td>Alarm sense 2</td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td>Rudder Reference</td>
</tr>
<tr>
<td></td>
<td>Channel 3</td>
<td>Supply Monitor</td>
</tr>
<tr>
<td></td>
<td>Channel 4</td>
<td>Rate Gyro sense</td>
</tr>
<tr>
<td></td>
<td>Channel 5</td>
<td>Gyro Compass sense</td>
</tr>
<tr>
<td></td>
<td>Channel 6</td>
<td>Joystick</td>
</tr>
<tr>
<td></td>
<td>Channel 7</td>
<td>Not used</td>
</tr>
</tbody>
</table>
1.4. Clutch Drive
TR10, 11 and 12 switch a nominal 12V onto the actuator clutch whenever pin 15 of
the microprocessor (IC2) is low at 0V.

1.5. SeaTalk Bus Transmit and Receive
SeaTalk transmit and receive circuitry consists of TR1, 2, 3,4, 5, 18 and 19 and their
associated components. Data Transmission is at 4800 baud with a low start bit and
line idling high. TR1 and TR2 provide high and low outputs respectively, whilst TR3
and Rl give overload protection to TR2 in the event of misconnection. TR4 and TR5
allow the microprocessor to monitor its own transmissions and also to receive data
from other units on the bus.

1.6. Fluxgate Drive
IC2 produces a series of 8KHz pulses on pin 2 which are then fed through TR6, 7
and 8 and AC coupled to the fluxgate via C3.

1.7 E² Prom
IC8 is an e² PROM (Electrically Erasable and programmable Read Only Memory)
which allows calibration values to be stored and recalled each time after power up.
Data is written to the e² PROM on pin 3 and read back on pin 4.

1.8 Supply Voltage Monitor
R53 and R54 scale down the supply voltage and feed it through to the analogue to
digital convertor. This enables the microprocessor to transmit a warning on the
SeaTalk bus if the supply voltage drops below 11.2V (12V system) or 22.4V (24V
system) for 10 seconds or more.

1.9. Alarm Drive
The two main warning alarms are driven via TR13, 14, 15 and 16. Components
R41,42, 79,80 and D7 and 8 are used to detect any tampering with the alarm
connections, as required by the SFIA.

2. Power Amplifier PCB Circuit Description;-:
Circuit diagram 12V-figure 3
Circuit diagram 24V - figure 3
PCB layout 12V-figure 4
PCB layout 24V-figure 5

The power amplifier electronics consist of three main areas;-:
1. Voltage regulator 24V-12V. (Not present on 12V boards).
2. Reverse connection protection.

2.1. Voltage Regulator (24V systems only)
TR13 and TR14 together with associated components form a 24-12V regulator
routin 12V to the course computer board via PL1.
Autohelm

2.2. Reverse Connection Protection
TR1 and TR2 along with RL1,2 and 3 ensure that external misconnection of Heavy duty V+, Heavy duty 0V and M1 and M2 will not damage the unit.

2.3. Bridge Amplifier
TR6, 7,8 and 9 form a bridge amplifier to control the actuator motor. Four modes of operation are possible, each selectable with a binary code on drive A and drive B.

Mode 1 - Drive A and drive B both a logic 1. The motor is shorted via TR7 and TR9. This mode is used for stopping the motor quickly.

Mode 2 - Drive A and drive B both at logic 0. The motor is open circuit and therefore may run as a generator allowing measurement of motor back emf. R14 and R16 in combination with R25 and R28 on the computer PCB scale down the back emf.

Mode 3 - Drive A is at logic 1. Drive B is at logic 0. The motor will rotate clockwise.

Mode 4 - Drive B is at logic 1, drive A at logic 0. The motor will rotate anti-clockwise.

TR4 and TR10 are interlocks, switching off TR8 and TR6 when both drives are switched high in mode 1. C3 and C20 suppress motor brush noise.
Fig. 1. ST7000 (Z083 and Z084) Course Computer Circuit Diagram
Fig. 3.
Fig. 4. Power Amplifier PCB Assembly/Parts List (Z083)
Autohelm

SeaTalk Service Manual

15

Colour code

Sc White
R Red
G Green
Y Yellow
B Blue
Br Brown

Fig-6. Connector PCB Circuit Diagram (Z083f Z084)

Sk1

Aux 1

- Sk1/13 0V - O Sc
- Sk1/2 V Reset - O R
- Sk1/1 FGSA - O 6
- Sk1/4 GND - O Sc
- Sk1/14 FGSB - O Y
- Sk1/15 FG Drive - O 8

Aux 2

- Sk1/3 0V - O R
- Sk1/17 WVS1 - O 6
- Sk1/16 WVS2 - O 8
- Sk1/7 Asense2 - O Y

TB1

TB2

TB3

TB4

Issue A

Fig. 7. Connector PCB General Assembly

<table>
<thead>
<tr>
<th>ITEMS</th>
<th>DRG/PART N°</th>
<th>QTY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>07163</td>
<td>4</td>
<td>TERMINAL BLOCK</td>
</tr>
<tr>
<td>2</td>
<td>07119</td>
<td>1</td>
<td>'D' CONNECTOR</td>
</tr>
<tr>
<td>1</td>
<td>3015-029</td>
<td>1</td>
<td>PCB DETAIL</td>
</tr>
</tbody>
</table>

- WHITE
- YELLOW
- GREEN
- RED
- BROWN
- BLUE

SeaTalk Service Manual

ISS C
ST6000 System

1. Service Procedures
Contents

1. Introduction 3
2. System Description 3
3. Operating / Calibration Instructions 4
 3.1 Operation 4
 3.2 Addition information for sailing vessels 10
 3.3 OperatingHints 12
 3.4 Calibration 15
 3.4.1 Adjusting Calibration 16
 3.4.2 Display Contrast Adjustment 17
 3.5 Fluxgate Compass – Automatic Deviation Correction 18
4. Common system problems 19
5. Track control interfacing 19
 5.1 Inverted data 19
 5.2 Conversion of units 19
 5.3 Alarm messages 19
 5.4 NMEA Data input format 20
6. Special functions 21
 6.1 Display of software version 21
 6.2 Permanent watch alarm mode 21
 6.3 Display Test mode 21
7. Service Visit to a Vessel 23
 7.1 Onboard diagnostics 23
1. Introduction
The ST6000 system section of this manual contains full system operating instructions and service procedures for the autopilot. Further in depth diagnostics are available for each module in the relevant product sections.

2. Systems description
The ST6000 is a modular Seatalk compatible autopilot system that can be built up to match the individual requirements of most vessels and steering systems. The ST6000 course computer can be used with all Seatalk compatible control units and ST50 instruments and will operate the following drive units:

- Z039 Linear drive type 1
- Z037 Rotary drive type 1
- Z041 Hydraulic pump type 1
- Z081 Hydraulic pump type 0
- Z088 I/O Sterndrive
- Z064 Type CR 3L/min (via Z085 Interface)
- Z066 Type CR 4.5L/min (via Z085 Interface)
Autohelm

3. Operating/Calibration Instructions

3.1 Operation

<table>
<thead>
<tr>
<th>Auto</th>
<th>Automatic Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUTO 235°</td>
</tr>
</tbody>
</table>

Push to engage automatic steering and maintain current heading.

OR

Push and hold down for 1 second to return to previous automatic heading. (Display returns to Auto after 10 seconds).

<table>
<thead>
<tr>
<th>Previous Automatic Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Course Changes (-1, +1, -10, +10)

<table>
<thead>
<tr>
<th>New Automatic Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Push to alter course to port (-) and starboard (+) in increments of 1 and 10 degrees.

<table>
<thead>
<tr>
<th>Standby</th>
<th>Current Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STANDBY</td>
</tr>
</tbody>
</table>

Push to disengage the autopilot for manual steering (The previous automatic heading is memorised).

<table>
<thead>
<tr>
<th>Track (see operating hints)</th>
<th>Automatic Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TRACK</td>
</tr>
</tbody>
</table>

Push to select track control from Auto.

Push again to return to automatic steering.

OR

Push and hold down for 1 second to select previous track control heading from Auto or Track.

(Display returns to Track after 10 seconds).
Response

- **Response Level Adjustment** (see Operating Hints)
 Push to increase (▲) or decrease (▼) response level.

 To display response level without changing it push both **Response** keys together briefly.

- **Rudder Gain Adjustment** (see Operating Hints)
 Push and hold down for 1 second both **Response** keys together to display rudder gain level.

 Within 10 seconds push once to increase (▲) or decrease (▼) ruddergain.

 (Response and Rudder levels are displayed for 10 seconds only)

Illumination

Push and hold down **Display** for 1 second to switch on illumination.

Within 10 seconds push **Display** to select illumination level.

 (Illumination level is displayed for 10 seconds only)
Autohelm

Display Key Sequence

The Display pushbutton is used to cycle through additional information menus. These menus depend on the autopilot mode and if navigation information is available.

Standby Mode

- Main Display

- Compass Heading

- Rudder Angle

- Navigation Displays

Auto Mode

- Main Display

- Rudder Angle

- Navigation Displays

See section on Navigation Displays.

- Watch Alarm

See section on Navigation Displays.
Track Mode

- Main Display

- Locked Course

- Rudder Angle

- Navigation Displays

- Watch Alarm

Navigation Displays

With the Navigation Receiver operating in waypoint mode, the following information can be displayed (provided that the Navigation Receiver transmits the appropriate information - see Installation Handbook).

- Cross Track Error

- Bearing to Waypoint

- Distance to Waypoint

- Waypoint Number

The arrows show the direction to steer to rejoin the desired Track:
- Starboard
- Port

- Magnetic
- True

See section on Navigation Displays.
Autohelm

Watch Alarm (not available in Standby)

• Engage the Autopilot in Auto Track Windvane mode.
• To select Watch alarm push Display repeatedly until Watch appears.

Watch

The 4 minute timer is now running:
— After 3 minutes 'Watch' flashes on all control units.
— After 4 minutes the alarm sounds on all control units.

• Push Auto at any time to reset the timer to 4 minutes and silence the alarm.
• To cancel the Watch alarm at any time push Display.

Auto 235°

Warning Messages

• Off Course Alarm

 COURSE
 OFF

— Sounds if the vessel deviates from the automatic heading by more than the selected amount for over 20 seconds.

• Low Battery Alarm

 BATTERY
 LOW

— Sounds if the course computer supply voltage falls below 11 volts for over 20 seconds.

• Track Mode Alarms

 DATA
 NO

— Sounds if no waypoint data is received from the Radio Navigation System for over 20 seconds.

 ERROR
 DATA

— Sounds if the data has the incorrect format or if an invalid flag is set.

 XTE 031
 LARGE 031

— Sounds if the cross track error exceeds 0.30n.m.
— Sounds when the target waypoint number changes. The displayed bearing is to the new waypoint. PORT or STBD indicates in which direction the autopilot will turn onto the new waypoint bearing. Push Track to silence the alarm and automatically steer onto the new bearing to waypoint.

Manual Override Alarm
(Installations with stern drive actuators only).

— Sounds for 10 seconds when the autopilot is manually overridden at the steering wheel. After 10 seconds the autopilot will return to Standby automatically.

Note: Push Standby to silence an alarm and select Standby mode (unless indicated otherwise).
3.2 Additional information for Sailing Vessels

Autotack
The ST6000 has a built-in Autotack function which will turn the vessel through 100°. This operates in both compass and vane modes as follows:

Vane
Push +1 and +10 keys together to initiate a tack turning to Starboard.

Push –1 and –10 keys together to initiate a tack turning to Port.

Note: It is important that the rudder angle transducer is accurately aligned as the Autotack function mirrors standing helm and any offset will change the initial tack angle.

Wind Trim (Windvane Operation)
Wind Trim allows the autopilot to be supervised by apparent wind direction. The wind direction is read either:

— From the SeaTalk bus (requires Autohelm ST 50 unit).

OR
— From an NMEA 0183 input on the control unit.

Push both red keys together to select Wind Trim and maintain the current apparent wind angle.

Push and hold down for 1 second both red keys together to return to the previous apparent wind angle.

Automatic Heading

Previous Automatic Heading
Wind Change Alarm

Wind Trim uses the fluxgate compass as the primary heading reference and automatically adjusts the compass heading to maintain the original apparent wind angle. If changes in apparent wind angle adjust the original automatic heading by more than 15° the wind change alarm will sound.

— The alarm is silenced by pushing both red keys together briefly.

Display of Wind Angle

If the wind angle information is supplied using the NMEA 0183 input or SeaTalk bus, the apparent wind angle and tack sense (◄ for port, ► for starboard) is added to the display menu and accessed via the Display button.

• Apparent Wind Angle

Use the ±1 or ±10 degree buttons to change heading and hence adjust the apparent wind angle.

Using Wind Trim

It is important to understand that "Wind Trim" prevents over-reaction to gusts or sudden wind shifts. One minute is required to change the heading in response to a permanent change in apparent wind angle. Do not attempt to override the automatic sequence with the course change buttons. In gusty conditions sail a few degrees off the wind and pay frequent attention to sail trim and helm balance using the rudder angle indication. Performance will normally be improved by reefing headsail and mainsail a little early rather than too late.
3.3 Operating Hints

Response Level Adjustment

The ST6000 has three response levels which enable tighter course keeping to be achieved in certain cases:-

- **Level 1**: Automatic Sea State Control
- **Level 2**: Automatic Sea State Inhibit
- **Level 3**: Automatic Sea State Inhibit and counter rudder.

When the autopilot is switched on, the response level is set to 1. This provides the best compromise between power consumption and course keeping accuracy and is suitable for nearly all situations.

Increasing Response level provides tighter course keeping at the expense of increased power consumption and general wear and tear. It is advisable to use the minimum response level necessary to achieve the desired course keeping accuracy. On larger power vessels level 3 can improve slow speed steering where the natural yaw damping of the vessel is reduced.

Note: Level 3 is not recommended for use at planing speeds or in rough seas.

Track

To make full use of Track control the following simple points should be observed:-

- Always steer the vessel to within 0.1nm of track and bring the heading to within 5° of the bearing to the next waypoint before selecting Track.
- Always check that there are no navigational hazards either side of the intended track.
- Always maintain an accurate log with regular plots to verify the computed position read from the Radio Navigation Receiver.
- Maintain a proper lookout at all times.

Waypoint Advance

If the navigation receiver is transmitting the waypoint number to the ST6000 the waypoint alarm will sound whenever a new target waypoint is selected (see Page 9). When the alarm is sounding the ST6000 will maintain the current heading and automatic track control is suspended. Check the displayed new bearing to waypoint and when it is safe to turn onto it, resume automatic track control by simply pushing Track. This accepts the new target waypoint and will steer the vessel onto the new bearing to waypoint.

The tidal offset may be very different on the new bearing, and it is good practise to check the cross track error after a couple of minutes. If the cross track error continues to increase make a course adjustment of say 10 degrees in the direction of the arrow. This will help the Track control correct more quickly for the new tidal vector.

Automatic Trim

If Automatic Trim has been selected during calibration the ST6000 will correct for trim changes. This correction can take up to one minute to apply the rudder offset necessary to restore the set automatic heading. Large course changes which change the apparent wind direction, can produce large trim changes. In these cases the autopilot will not immediately assume the new automatic heading, and only settle onto course when the Automatic Trim has been fully established.

To minimise the inherent time delay the following procedure may be adopted for large course changes.

- Note required new heading.
- Select Standby and steer manually.
- Bring vessel onto new heading.
- Select Auto and let vessel settle onto course.
- Bring to final course with 1° increments.

It is sound seamanship to make major course changes only whilst steering manually. In this way any obstructions or other vessels may be cleared properly and due account taken of the changed wind and sea conditions on the new heading prior to engaging the autopilot.

Rudder Gain

The rudder gain level selected during initial sea trials will normally provide excellent steering performance over a wide range of conditions. However, it may be noticed that the autopilot tends to be a little less stable on northerly headings in the higher latitudes of the northern hemisphere (and conversely southerly headings in the southern hemisphere). This is caused by the increasing angle of dip of the earth's
magnetic field at higher latitudes which has the effect of amplifying rudder response on northerly (southerly) headings.

Rudder Gain Adjustment (Sail) It is not normally necessary to adjust the autopilot gain setting once the correct level has been established during initial sea trials. Depending on the yachts individual steering characteristics a change of one level may improve course keeping accuracy when going from northerly to southerly (increase) or southerly to northerly (decrease) headings.

The effect may be judged by carrying out a sea trial in smooth water conditions and observing the results.

Note: The effect is reversed for the southern hemisphere.

Rudder Gain Adjustment (Powercraft) The tendency towards northerly (southerly) heading instability is more obvious in high speed craft and can be corrected by a reduction in the rudder gain setting. At speeds in excess of 30 knots a reduction of two levels can be required on headings between 315° and 045° (northern hemisphere) or 135° and 230° (southern hemisphere).

Two options are available to control this:

- **Manual** (Low speed and displacement craft) The rudder gain control may change by one level when going from northerly to southerly (increase) or southerly to northerly (decrease) headings. The effect may be judged by carrying out a sea trial in smooth water conditions and observing the results.

 Note: The effect is reversed for the southern hemisphere.

- **Autoadapt** (High speed planing craft) The ST6000 can be set to automatically reduce the effects of Northerly heading instability. This feature is selected in calibration mode by entering the Latitude (see Installation Handbook, Calibration, section on 'Auto Adapt'). When selected the ST6000 automatically adjusts the Rudder Gain depending on the compass heading, removing the need for manual adjustment.

Rudder Gain/Speed Adjustment (Powercraft)

High speed planning craft exhibit very different steering characteristics when on and off the plane. As a result it is generally necessary to adjust the Rudder Gain setting when going from displacement speed to planing speed or vice versa. Two options are available to achieve this:

- **Automatic**
 When the ST 6000 is used with an Autohelm ST50 Speed Instrument or Tridata. Rudder Gain is adjusted automatically with boat speed. There should be no need for any manual adjustment.

- **Manual**
 (No ST50 Speed/Tridata) The Rudder Gain setting may be increased by one or two levels when dropping from planing speed to cruise speed and decreased by the same amount when returning to planing speeds.

Note: It is important to make the gain adjustment after dropping to displacement speed and before returning to planing speed.

Note: The adjustment of Gain with boat speed is normally only required for high speed planing powercraft.

Unsatisfactory Steering Performance

If the ST6000 has been installed and set up in accordance with the instructions in the Installation Manual it will provide excellent steering performance over a wide range of conditions. If performance drops but the autopilot is still working correctly, the following simple checks should find the fault:

- **Has a magnetic influence been introduced near the fluxgate compass?** i.e. anchor, chain, radio equipment, loudspeaker, tools, generator etc. Check that the autopilot compass heading still corresponds with the steering compass.
- **Are all fuses intact, circuit breakers engaged?**
- **Are all screw connections tight and free of corrosion?**
• If the autopilot fails to hold course check the Rudder Gain level. Has it been changed from the initial sea trials level (check in Installation Manual)?
• If the vessel wanders check that the Rudder Reference Transducer linkage is secure with no free play.
Hydraulic Drive Units only:-
• Check that all unions are tight and bleed system to remove air.

Failure of Drive Unit to Disengage
The mechanical drive actuators of the ST6000 are designed to fail Safe1 - When power is disconnected the drive unit will disengage leaving the steering system free for manual control.
When Standby is selected the actuator will Disengage leaving the steering free.
It is remotely possible that a fault could develop which could cause the actuator to remain engaged even when Standby is selected. If this happens:-
• DISCONNECT THE MAIN CIRCUIT BREAKER TO THE AUTOPILOT - THE STEERING WILL IMMEDIATELY BE FREE, or
• IN AN EMERGENCY THE ACTUATOR CLUTCH CAN NORMALLY BE OVERRIDEN BY TURNING THE STEERING WHEEL HARD.
It is emphasised that this fault is extremely unlikely and can be immediately corrected as described.
If preferred a separate Override switch can be fitted close to the steering position which will break the actuator clutch drive for Emergency Use.

Stern Drive Actuator
(Manual Override Option)
Manual override is selected during calibration using the Auto Release option. It must only be used on installations fitted with the stern drive actuator. When it has been selected, the ST6000 can be overridden to allow hand steering by turning the steering wheel. This will return the ST6000 to Standby and sound the control unit buzzer for 10 seconds. There is a slight delay before the ST6000 will return to Standby. Excessive force is not required and will not reduce this delay.
With the ST6000 in Auto and clear of obstruction turn the steering wheel to observe the manual override. Repeat two or three times until you are confident with its operation.

The manual override is intended for emergency use only. The ST6000 should normally be disengaged by pushing the Standby button on the control unit.
3.4 Calibration

Recommended Settings

As supplied the ST6000 can be switched on and tested safely without any adjustments to the factory calibration settings. The table below lists the suggested settings for sailing and power displacement and planing power vessels. These will provide good performance for initial sea trials and can be fine tuned later to optimise performance.

<table>
<thead>
<tr>
<th>Vessel Type</th>
<th>Displacement</th>
<th>Planing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factory preset</td>
<td>Set to</td>
</tr>
<tr>
<td>Rudder Gain (level)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Rate Gain (level)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Rudder Angle Limit (degrees)</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Turn Rate Limit (degrees/sec)</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Cruise Speed (knots)</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>Off Course Alarm (degrees)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Trim Level</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Auto Adapt</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autopilot Drive Unit Type</th>
<th>Mechanical</th>
<th>Stern</th>
<th>Hydraulic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factory preset</td>
<td>Set to</td>
<td>Set to</td>
</tr>
<tr>
<td>Drive Type</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Rudder Position Deadband (level)</td>
<td>See 3.8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Auto Release</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Selecting and Exiting from Calibration Mode

To select calibration mode:-
- Push Standby.
- Push and hold down for 2 seconds, Track and Display together.

To exit calibration mode at any point;

a) Saving any changes made:-
- Push and hold down for 2 seconds, Track and Display together.

b) Ignoring any changes made:-
- Push Standby.
Autohelm

3.4.1 Adjusting Calibration
In calibration mode, the Display button is used to scroll through the menu. The displayed value is adjusted using the Response buttons (hold button down for fast scroll).

- Rudder Gain, levels 1 to 9, (see 5.6)

- Rate Gain, levels 1 to 9, (see 5.7) (Counter Rudder).

- Rudder Angle Limit, 15° to 40° (see 3.6).

- Rate of Turn Limit, 5° to 20°/sec.

- Cruise Speed, for Track mode operation, 4 to 60 knots.

- Off-Course Alarm, 15° to 40° angle.

- Automatic Trim, (see 5.4).

- Remote Control Identifier. (For Future Use).
Autopilot Drive Unit Type.

1 = Future Use
2 = Future Use
3 = Mechanical with Rudder Reference
4 = Hydraulic with Rudder Reference

- Rudder Position Deadband (levels 1 to 9), (See 3.7).

- Northerly/Southerly Heading Instability

Select Hemisphere

N (North)
S (South)

Enter Local Latitude using Response Keys. Atypical display in the Northern Hemisphere would be:

LAT N 0°

and in the Southern Hemisphere:

LAT S 35°

- Auto Release (see 3.8).

AUTO 0
RELEASE 0

0 = OFF
1 = ON

The Auto Release facility is designed to provide Emergency Manual Override when used with the Autohelm Stern Drive Actuator.
For all other Drive Systems Auto Release must be selected "OFF" (0).

3.4.2 Display Contrast Adjustment
The LCD Contrast can be adjusted to suit a wide range of control unit viewing angles.
- Push display and track together momentarily.
 - Push response ▲ to increase contrast (suits viewing from below),
 - Push response ▼ to decrease contrast (suits viewing from above).
 - Adjust the display for optimum viewing.
 - Push display and track together momentarily to store selection and return to previous operating mode.
3.5 Automatic Deviation Correction

The ST6000 will correct the fluxgate compass for operation in most deviating magnetic fields. This should be carried out in calm conditions preferably in flat water.

- To select compass adjust **Push** and hold **Standby** for 1 second.

![Adjust Compass]

Keeping boat speed below 2 knots, turn the vessel slowly so that it takes at least 3 minutes to complete 360°. Keep turning until control unit beeps, and the display changes to show the amount of deviation the autopilot has corrected:-

![HDG 248° Dev 12°]

Note: If the amount exceeds 15°, it is recommended the fluxgate should be re-sited.

- Use the course change buttons to adjust the displayed heading until it agrees with the steering compass or a known transit bearing.
 Note: 000° is always followed by OFF. This will suppress the display of compass and automatic headings on the control unit.
- To exit compass adjust and store the compass settings push and hold **Standby** for 1 second.
- To exit compass adjust without saving any new settings push **Standby** momentarily.
4. Common system problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>To be updated as necessary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"</td>
<td></td>
</tr>
</tbody>
</table>

5. Track control interfacing

In most cases interfacing the ST6000 to either a GPS, Decca, Loran or Satellite Navigation system is a simple and straight forward task so long as the requirements set out in section 6 of the installation manual are met. There are however a few exceptions.

5.1 Inverted Data

Some receivers, notably some of the Furuno range and early Navstar models, transmit data in an inverted format with respect to 5V. This is easily seen as the data line will idle high with respect to 0V in between data transmissions. In these cases the NMEA cable on the rear of the control unit must be wired with the red wire connected to 5V (this is normally available on the receiver terminal block), and the blue wire connected to the data line.

5.2 Conversion of Units.

All data containing units of distance will be converted to Nautical miles by the Control Unit. Therefore any receivers displaying Cross Track Error or Distance To Waypoint in either Kilometres of Statute miles etc will have their data displayed on the control unit in Nautical miles.

5.3 Alarm Messages

Track mode has 3 alarm messages:-

1. No data If a standard NMEA sentence is not received by the ST6000

2. Data error The ST6000 has recognised the incoming data as NMEA but has detected an invalid flag. This is normally due to poor signal strength at the receiver.

3. Large XTE Cross track error greater than 0.3NM.

Errors 1 and 2 can provide valuable information as to where an installation problem might lie. The 'No data' message indicates the ST6000 is not receiving NMEA data and carries a high probability of a wiring error between the receiver and the pilot. The 'data error'
message indicates the ST6000 is receiving data recognised as NMEA but has an invalid flag set. This is normally due to the receiver having a low signal strength or a high noise figure.

5.4 Autohelm 6000 NMEA 0183 data input format

The 6000 must receive Cross Track Error data at least once every 30 seconds.

If a display of Waypoint Bearing, Distance or Number or the Waypoint advance facility is required then this information must be received at least once every 30 seconds.

All NMEA data is read into a buffer thus enabling the 6000 to cope with delays between characters and delays between sentences.

All Talker identifier characters, ie RA, DE, LC etc. are ignored allowing interface with any type of equipment so long as the sentence type is one of the following:

- Apparent wind speed and angle can be received from any external equipment transmitting the N.M.E.A VWR header. The ST6000 will only display apparent wind angle but will convert and retransmit both apparent wind speed and direction on the seatalk bus. This information can then be displayed on an ST50 wind instrument acting as a repeater.

<table>
<thead>
<tr>
<th>Track Control</th>
<th>Bearing to Waypoint</th>
<th>Distance to Waypoint</th>
<th>Waypoint Number</th>
<th>Apparent Wind Speed and Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTE</td>
<td>APB</td>
<td>WDR</td>
<td>APB</td>
<td>VWR</td>
</tr>
<tr>
<td>XTR</td>
<td>BPI</td>
<td>WDC</td>
<td>APA</td>
<td></td>
</tr>
<tr>
<td>APA</td>
<td>BWR</td>
<td>BPI</td>
<td>BPI</td>
<td></td>
</tr>
<tr>
<td>APB</td>
<td>BWC</td>
<td>BWR</td>
<td>BWR</td>
<td></td>
</tr>
<tr>
<td>RMB</td>
<td>BER</td>
<td>BWC</td>
<td>WDR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEC</td>
<td>BER</td>
<td>BWC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RMB</td>
<td>RMB</td>
<td>RMB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BOD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WCV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BEC</td>
<td></td>
</tr>
</tbody>
</table>
6. Special Functions

6.1 Display of Software Version
It is possible to display the version number of both course computer and control unit software installed in a particular system. This is achieved by pressing both the +10 and -10 keys together for 2 seconds and releasing the display will show the control unit version (65 followed by version number) for 10 seconds followed by the course computer version (66 followed by version number). The pilot must be in standby mode at the time. Each version is displayed for 10 seconds before the pilot reverts back to standby. A software history for each product is shown in the relevant service sections.

6.2 Permanent Watch Alarm Mode
The ST6000 autopilot can be set up with a permanent watch alarm mode, as required by the Sea Fish Industry authority (SFIA).
It must be stressed that the selection of this mode is permanent and can only be reversed by returning the course computer to Nautech.
Permanent watch alarm is achieved by first entering the calibration menu. Once in calibration, regardless of display message, press the Auto, Standby, and Track keys together for 1 second before releasing. The display will now show 'SELECT WATCH'. The user now has 10 seconds to select permanent watch alarm mode by again pressing Auto, Standby and Track together for 1 second. The display will then show 'WATCH ON1 for 10 seconds before reverting back to 'CAL1. A normal exit from calibration mode must now be executed.

6.3 Display Test Mode
All display segments on the control unit can be switched on by pressing the +10, -10, Standby and Display keys together. This mode can only be accessed after the unit has been powered up with the yellow data wire open circuit.
7. Service visit to a vessel

When a service visit to a vessel is made the most common fault encountered is likely to be poor connections or inadequate power supplies. These should be thoroughly checked before the service visit diagnostic procedure is carried out. When trying to locate a fault it should be remembered that most failures will occur in the Course Computer with the Control Units as the next most likely. It should be noted that the calibration variables and auto deviation correction will require re-setting if either the course computer, its PCB or its Software are exchanged. Similarly if the Control Unit PCB is exchanged the display contrast will require re-setting. Procedures for carrying out both these operations are given in section 3.

Always note the course computer calibration settings before removing from the vessel.
7.1 Service Visit - Diagnostic Procedure
On arrival check for bad connections and for inadequate power supplies. If the system still exhibits a fault, then use the diagnostic procedure outlined below.
ST6000 Control Unit (Z124)

1. Service Procedures

2. Technical Information
Autohelm

1. Service Procedures

Contents

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Description</td>
<td>3</td>
</tr>
<tr>
<td>2. Dismantling</td>
<td>3</td>
</tr>
<tr>
<td>3. Reassembly</td>
<td>3</td>
</tr>
<tr>
<td>4. Display Contrast Adjustment</td>
<td>4</td>
</tr>
<tr>
<td>5. Functional Test</td>
<td>6</td>
</tr>
<tr>
<td>6. Product History</td>
<td>8</td>
</tr>
<tr>
<td>7. Software History</td>
<td>8</td>
</tr>
<tr>
<td>8. Spares Numbers</td>
<td>8</td>
</tr>
</tbody>
</table>

Illustrations

Fig. 1. General assembly 5
1. Description
The Z124 control unit is Seatalk compatible and consists of a single PCB built using surface mount technology. The unit can be functionally tested (figure 3) without the use of special equipment other than a seatalk cable with a seatalk plug at one end and bared cores at the other.
If a control unit or its PCB are replaced the display contrast will require re-setting. This should be carried out aboard the vessel following the instructions given in section 3.

2. Dismantling
After removing the unit from the boat and returning to the service centre. Place face down on a clean, light foam surface. Preferably conductive.
1. Unscrew and remove the 4 case securing screws from the rear cover. Push each cable loom assembly back through its grommet so as to obtain working clearance to the PCB (fig 1)
Note: if cables are very tight in grommets apply a small smear of silicon grease to outer sheath, (grease can be wiped off after reassembly).
If removing the PCB assembly it will be necessary to de-solder the cables from the PCB. Great care should be exercised when de-soldering so as not to damage the pads on the PCB.
2. Unscrew and remove the 9 screws which secure the PCB to the facia.
Note: Do not at this stage remove the screws which secure the LCD assembly to the PCB. Refer to figure 1 to clarify which screws to remove.
3. Before removing the LCD ensure that lint free and preferably anti static finger cots are worn to prevent the LCD or elastomers getting dirty or greasy.
4. Unscrew and remove the 3 LCD housing retaining screws (fig 1). Be careful to hold the LCD surround, LCD, and diffuser when dismantling. Lift away from the PCB and store.

3. Re-assembly
Re-assembly is a straight reversal of the above procedure but note the following points:-
1. Ensure the LCD is correctly orientated relative to the PCB (fig 1).
2. Ensure the diffuser is correctly orientated relative to the LCD and PCB (fig 1).
3. Note the correct orientation of the various looms and core colours to the PCB pads (fig 1).
4. Ensure that the board is tightened down sequentially to ensure the load is evenly spread.
5. Pull the loom assemblies back through the grommets when lowering the cover to ensure that the cables do not bunch up inside the cover and foul the PCB on re-assembly.
6. Refit the cover.
7. Re-check for full function after re-assembly to check the LCD has not been damaged or looms incorrectly soldered. Adjust LCD contrast if necessary.

4. Display Contrast adjustment
The LCD Contrast can be adjusted to suit a wide range of control unit viewing angles. Push display and track together momentarily.
Push response ▲ to increase contrast (suits viewing from below).
Push response ▼ to decrease contrast (suits viewing from above).
Adjust the display for optimum viewing.
Push display and track together momentarily to store selection and return to previous operating mode.

![Diagram of LCD Contrast adjustment]
Fig. 1.
4. Z124 Control Unit Functional Test

- Disconnect Control Unit from the sealtalk bus

- Connect Test lead as follows:
 - Screen to 0V
 - Red to +12V
 - Yellow open circuit

- Tone sounds at Switch On?
 - NO → Faulty PCB
 - YES →

- Does display show ST6000 followed, after 2 seconds with NO LINK?
 - NO → Faulty PCB
 - YES →

- Do all pushbuttons sound when pressed?
 - NO → Faulty PCB
 - YES →

- Press -1, +10, Standby and Display keys together

- A
All display segments and illumination switched on?

YES → Control Unit OK

NO → Faulty PCB
Autohelm

5. Product History - Control Unit (2124)

<table>
<thead>
<tr>
<th>Change</th>
<th>Serial number</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>030001</td>
<td>production start</td>
</tr>
</tbody>
</table>

6. Software History - Control Unit (Z124)

<table>
<thead>
<tr>
<th>Version</th>
<th>Change</th>
<th>Serial No</th>
</tr>
</thead>
<tbody>
<tr>
<td>65E</td>
<td>Product launch</td>
<td>030001</td>
</tr>
</tbody>
</table>

7. Spares numbers - Control unit (Z124)

<table>
<thead>
<tr>
<th>Item</th>
<th>Catalogue no</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double skin mounting kit</td>
<td>Q003</td>
<td>allows fixing to up to 4" thick bulk heads</td>
</tr>
<tr>
<td>PCB assembly</td>
<td>Q027</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>Q028</td>
<td></td>
</tr>
<tr>
<td>Protective cover</td>
<td>D123</td>
<td></td>
</tr>
</tbody>
</table>
2. Technical Information

Contents

1. Circuit Description 2
 1.1 Power Supply 2
 1.2 Microprocessor and Program Memory 2
 1.3 LCD and Display Driver 2
 1.4 Negative Rail Generator 2
 1.5 N.M.E.A Interface 2
 1.6 Seatalk Bus Transmit and receive. 2
 1.7 Keypad Operation 2
 1.8 Buzzer Operation 3
 1.9 Illumination Drive

Illustrations

Fig. 1. Circuit Diagram 4
Fig. 2. PCB Assembly/Parts List 5
1. Control Unit PCB Circuit description

Fig. 4. Circuit Diagram
Fig. 5. PCB Assembly/Parts List

1.1 Power supply
Incoming power is routed to the PCB via PL1 and SKT1. DI and D2 protect against reverse connection of the supply. IC1 is a 5v regulator and can also reset the microprocessor, via TR1, should the supply voltage fall below 6V.

1.2 Microprocessor and program memory
IC6 is an Intel 80C32 microprocessor. It can access up to 32k bytes of program memory (IC5) via the latch IC4. A clock signal for the microprocessor is provided by an 11MHz ceramic resonator (XL1), and associated capacitors CIS and C16. Capacitors C17, C18 and C19 provide decoupling.

1.3 LCD and Display driver
The LCD is a Nautech custom part. The display is driven by a Hitachi Led driver (IC3) deriving its drive voltages from resistor chain R27-R30 and VR1. Communication to the microprocessor is via a 4 bit parallel bus (DB4 to DB7) and the three control lines E,R/W and RS. Capacitors C8 and C10 provide decoupling and resistor R26 the clock signal for IC3.

1.4 Negative Rail Generator
A negative voltage rail is required by the LCD display and is generated by a switching regulator formed by TR6,D5 and D6. A 4.8kHz waveform is generated from the microprocessor P3.4 (pin no. 16). This drives a charge pump, via transistor TR16, pumping charge from C20 via D6 to C21. The negative rail is then stabilised by D5 and R49.

1.5 N.M.E.A Interface
NMEA data is fed to the control unit via PL2 and isolated from the rest of the circuit using the opto-isolator (IC7). Diode D3 provides input reverse connection protection and resistor R15 is tuned to give the desired bandwidth of operation. The output from IC7 is connected to the microprocessor Port P3.2 (pin 14). Capacitor C7 provides decoupling.

1.6 Seatalk Bus Transmit and Receive
Seatalk transmit and receive circuitry consists of TR9, 10, 11, 12, 13, 14 and 15 and their associated components. Data transmission is at 4800 baud with a low start bit and line idling high. TR9 and TR13 provide high and low output respectively, whilst TR14 and R45/46 give overload protection to Trl3 in the event of misconnection. TR10 and TR11 allow the microprocessor to monitor its own transmissions and also to receive data from other units on the bus.

1.7 Keypad operation
The 10 button keypad is interfaced to the microprocessor via 2 dual input multiplexer IC's.
Each key is read in turn when the relevant channel is selected via pins p3.5 and p3.6.

1.8 Buzzer Operation
TR2 and TR3 are configured as an astable multivibrator with a nominal frequency of 2.7kHz. TR7 and 8 are used to switch the buzzer with TR7 acting as an inverter to turn the buzzer off during a microprocessor reset.

1.9 Illumination Drive
TR10, 12 and 16 provide a constant current drive for lamps LP1 and LP2. The current is set by resistors R11 and R12. TR6 is an inverting buffer to turn off the lights during a microprocessor reset. Illumination levels are given by pulse width modulation of drive line P3.3 (pin 15).
NOTES
1. ALL SURFACE MOUNT CAPACITORS AND RESISTORS TO HAVE NICKEL BARRIER SOLDER PLATED TERMINATIONS.
2. ITEM 47 (15085) & ITEM 49 (15127) TO LIE FLAT ON PCB.
3. DO NOT FIT COMPONENTS R45, R47, R49, C11, C12, C13, D5 AND VR1.
4. OPTION TO ASSEMBLE PCB WITH EITHER XL2 OR XL1/C15. C16. XL2 IS THE PREFERRED OPTION.
5. THIS ITEMS LIST HAS NOT BEEN RATIONALISED FOR 'IN HOUSE' BUILD. ITEMS 93041000P.91051K AND 91061K2 ARE NON-PREFERRED SURFACE MOUNT COMPONENTS.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PART NUMBER</th>
<th>QTY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| 47 | 15085 | 1 | CERAMIC RESONATOR (CERALOCK) BUILT IN LOAD CAPACITANCE CST 11.0MT (3 PINS) XL2 OR 46 930I33P 2 0805 CAPACITOR 33pF ±5% 50V COG C15, C16 & 45 15085 1 CERAMIC RESONATOR 11Mhz (CSA 11.0MT) XL1 EITHER AND 44 9408HD44780 1 LCD DISPLAY DRIVER HD44780 (HITACHI) OR KS0062 (SAMSUNG) IC3 1 AND 43 05018 TRANSISTOR BC337 NPN (TO BE ASSEMBLED WITH TR4 1 MAXIMUM LEAD LENGTH OF 4MM). OR 42 9501BCX68 1 TRANSISTOR SOT 89 BCX68 NPN TR4 EITHER PLUS 41 940274253 2 HCMOS (DUAL 4 TO 1 MULTIPLEXER) 74HC253 IC8, IC9 40 94006N139 1 OPTO ISOLATOR 6N139 LEADS TO BE FORMED FOR IC7 BUTT JOINT CONNECTION (i.e. HP'S OPTION 100) 39 940680C32 MICRO ROM LESS 80C32 12 MHz PLCC IC6 38 940374373 HCMOS LATCH 74HC373 IC4 37 940093061 EEPROM 16x16 M9306M1 [SGS] OR NATIONAL SEMICONDUCTOR IC2 36 04049 VOLTAGE REGULATOR LM2925 IC1 35 9500BC807 TRANSISTOR SOT 23 BC807 PNP TR9 34 9500BC817 14 TRANSISTOR SOT 23 BC817 NPN TR1,3,5,6,7,8,10,11,12,13,14,15,16 33 9200BAV99 2 DIODE SOT 23 BAV99 D4, (D5), D6 # SEE NOTE 3 32 9200BAS19 3 DIODE SOT 23 BAS19 D1,D2,D3 31 93041000P 1 0805 CAPACITOR 1000pF ±10% 50V X7R C14 30 930522N 3 1206 CAPACITOR 22 µF 5% 50V X7R C2,C5,C6 29 93070U1 10 1206 CAPACITOR 0.1 µF ±20% 50V X7R D1,7,8,10,17,18,19,22,23,24 28 9314470P 0 0805 CAPACITOR 470pF ±20% 50V X7R (C9,C11,C12,C13} # SEE NOTE 3 27 931110U 1 CAPACITOR SOLID TANT 10 µF ±20% 6V3 (SIZE 0) C21 26 03063 2 CAPACITOR ELECTROLYTIC 100uF ±20% 25V MIN 07.5 MAX C3,C4 25 9309 1U 1 CAPACITOR SOLID TANT 1 µF ±20% 16V(SIZE A) C20 24 9106100K 1 1206 RESISTOR 100K 5% 0.1 25W R15 23 91051K 4 1206 RESISTOR 1KO 2% 0.125W R27,R28,R29,R30 22 9106680R 0 1206 RESISTOR 680R 5% 0.125W (R49) 21 9106120R 1 1206 RESISTOR 120R 5% 0.125W R11 20 910691K 1 1206 RESISTOR 9 1K 2% 0.125W R26 19 91068R2 4 1206 RESISTOR 8R2 5% 0.125W R46,(R47),R48,R50,R53 # SEE NOTE 3 18 910639K 3 1206 RESISTOR 39K 5% 0.125W R31,R37,R38 17 910622K 1 1206 RESISTOR 22K 5% 0.125 W R34 16 910615K 1 1206 RESISTOR 15K 5% 0.125W R36 15 910612K 19 1206 RESISTOR 12K 5% 0.125W R1,2,3,6,7,10,16,17,18,19,21,22,23,24,25,35,39,41 14 91064K7 4 1206 RESISTOR 4K7 5% 0.125W R4,R14,R40,R52 13 91062K2 3 1206 RESISTOR 2K2 5% 0.125W R13,R33,R42 12 91061K2 3 1206 RESISTOR 1K2 5% 0.125W R9,R43,R44 11 9106470R 2 1206 RESISTOR 470R 5% 0.125W R5,R8 10 9106390R 2 1206 RESISTOR 390R 5% 0.125W R32,R51 9 910313R 1 1206 RESISTOR 13RO 1% 0.125W R12,(R45) # SEE NOTE 3 8 9 107 IK 0 CHIP TRIMMER RESISTOR 1K MURATA RVG 4F03A-102VM (VR1) # SEE NOTE 3 7 15087 1 BUZZER KBS-27DB-3T BZ1 6 06025 10 CONTACT CLICKER OOK-73470 S1,S2,S3,S4,S5,S6,S7,S8,S9,S10 5 26006 1 RIVSCREW 1712-3507 (AVDEL) 4 15039 1 HEATSINK REDPOINT TV58 3 07164 1 28 PIN SOCKET 2 3015-025 1 6000 CONTROL UNIT PCB DETAIL 1 3010-036 10 CLICKER SEAL

ST6000 (Z124) Control Unit PCB Assembly
ST6000 Course Computer (Z123)

1. Service Procedures
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Description</td>
<td>3</td>
</tr>
<tr>
<td>2. Disassembly</td>
<td>3</td>
</tr>
<tr>
<td>3. Reassembly</td>
<td>3</td>
</tr>
<tr>
<td>4 Functional Test</td>
<td>5</td>
</tr>
<tr>
<td>5. Product History</td>
<td>10</td>
</tr>
<tr>
<td>6. Software History</td>
<td>10</td>
</tr>
<tr>
<td>7. Spares Numbers</td>
<td>10</td>
</tr>
</tbody>
</table>

Illustrations

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1. General Assembly</td>
<td>4</td>
</tr>
</tbody>
</table>
1. Description
The ST6000 course computer is SeaTalk compatible and consists of a single PCB containing both the course computer and power amplifier circuitry. It is built using surface mount technology and available for 12v operation only.
Note: If the course computer or its PCB are replaced, calibration values previously altered from the factory settings will require resetting. Also the Fluxgate Compass will require re-linearising (auto deviation correction). Both of these procedures are outlined in the ST6000 system section.
It is essential the cable used for the single DC supply is of adequate gauge otherwise the system may reset back to standby mode when the drive motor operates.
The table below gives a guide to cable size required. The length quoted is the total cable length from the main distribution panel to the course computer, plus the length from the course computer to the drive unit.

<table>
<thead>
<tr>
<th>Cable length</th>
<th>Cable type</th>
<th>Copper area</th>
<th>Cable gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 7m</td>
<td>50/0.25</td>
<td>2.5mm²</td>
<td>12 awg</td>
</tr>
<tr>
<td>up to 10m</td>
<td>56/0.3</td>
<td>4.0mm²</td>
<td>10 awg</td>
</tr>
<tr>
<td>up to 16m</td>
<td>54/0.3</td>
<td>6.0mm²</td>
<td>8 awg</td>
</tr>
</tbody>
</table>

2. Disassembly
1. Unscrew and remove the 2 countersunk screws securing lid on terminal box section and lift off lid.
2. Unscrew and remove the 2 thumb nuts securing extrusion assembly to terminal box unit and pull extrusion assembly away from terminal box.
3. Unscrew and remove the 8 pan head screws securing both the connector cover and extrusion end cap mouldings.
4. Remove the two heatsink location screws (ensure associated nuts and washers are recovered).
5. Carefully withdraw the PCB assembly.

3. Re-assembly
In all cases re-assembly is a reversal of the dismantling procedure but note the following:-
Apply a small amount of loctite 270 (or equivalent) to the threads of the two heatsink location screws after they have been installed.
4. Functional Test

The course computer can be functionally checked as follows; Pre-checked equipment required:

SeaTalk Control Unit (Z124)
Fluxgate Compass (Z105 or Z130)
Pushpit vane transducer (Z087)
Rudder Reference Transducer (Z060)
Terminal PCB (Q030)
Terminal Block
Multimeter
Motor (small AH1000 type) (M080)
Power Supply (Min rating 10A)
SeaTalk Cable (D131)

Procedure

1. Connect all units to course computer and terminal PCB.
2. Position the rudder reference transducer arm diametrically opposite the cable gland.
3. Connect the 12v supply (do not switch on) and refer to the bench testing (stage 1) procedure that follows.
4.1 Course Computer Bench Testing (Stage 1)

Switch on

Does control unit sound tone?

NO
Faulty PCB

YES

Does control unit display ST6000 for 2s and then display 'Standby' and Current compass heading?

NO

YES

Does compass reading change as compass is rotated?

NO

YES

Connect meter +ve to clutch +ve
Connect meter -ve to clutch -ve

YES

Does meter read 0v?

NO

YES

A

Replace PCB
Press 'Auto'

Does meter read >10v?

YES

Press 'standby'. Select Drive level 1 via the calibration menu. Press 'Auto'

Press +10° three times

NO

Motor runs?

YES

Motor stops within 10 seconds?

YES

B

Replace PCB

NO

Replace PCB
Autohelm

Press \(-10^\circ\) three times

Motor runs?

YES

Motor stops within 10 seconds?

NO:

Replace PCB

YES:

Press 'Standby'.
Select Drive level 3 via the calibration menu

Press 'Standby' and 'Auto' together

Does Display indicate windvane mode?

NO:

Replace PCB

YES:

C
Press 'Standby'

Move rudder reference arm 30° anti-clockwise

Does rudder angle display show approximately 30° starboard rudder

YES

Move rudder reference arm 60° clockwise

Does rudder angle display show approximately 30° port rudder

YES

Replace PCB

Course Computer OK
5. Product History - Course Computer (ST6000)

<table>
<thead>
<tr>
<th>Change</th>
<th>Serial No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production start</td>
<td>030001</td>
<td></td>
</tr>
</tbody>
</table>

6. Software History - Course Computer (ST6000)

<table>
<thead>
<tr>
<th>Version</th>
<th>Change</th>
<th>Serial No</th>
</tr>
</thead>
<tbody>
<tr>
<td>66F</td>
<td>Product launch</td>
<td>030001</td>
</tr>
<tr>
<td>66G</td>
<td>Improved Trim function</td>
<td>500571</td>
</tr>
</tbody>
</table>

7. Spares numbers - Course Computer (ST6000)

<table>
<thead>
<tr>
<th>Item</th>
<th>Catalogue No</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB Assembly</td>
<td>Q031</td>
<td>Main course computer PCB</td>
</tr>
<tr>
<td>PCB Assembly</td>
<td>Q030</td>
<td>Terminal box PCB</td>
</tr>
</tbody>
</table>
2. Technical Information

Contents

1. Circuit Description .. 2
 1.1 Power Supply .. 2
 1.2 Microprocessor and program memory 2
 1.3 Power Amplifier ... 2
 1.4 Analogue to Digital converter 2
 1.5 Clutch Drive .. 3
 1.6 Seatalk Bus Transmit and Receive 3
 1.7 Fluxgate Drive ... 3
 1.8 E2 Prom ... 3
 1.9 Supply Voltage Monitor 3
1. ST 6000 Course Computer Circuit Description
Circuit diagram Fig. 1.
PCB Assembly/Parts List Fig. 2

1.1 Power Supply
Incoming power is routed to the PCB, via the 'D' connector socket SK1. VI provides suppression against any voltage spikes present on the incoming DC supply whilst D15 protects against accidental reverse connection of the supply. IC1 is a 5v regulator with an integral reset function which resets the microprocessor, via Tr9, should the supply voltage be insufficient to maintain regulation.

1.2 Microprocessor and Program memory
IC2 is an Intel 80C32 microprocessor with 256 bytes of on board Ram. It can access up to 32K bytes of programme memory in IC7, via the latch IC6. A Clock Signal for the microprocessor is provided by an 11MHz ceramic resonator (XL1) and C15 & C16. Alternatively, XL2 can be used which combines all three components in one package.

1.3 Power Amplifier
TR23, 24, 25 and TR26 are configured to form a power amplifier capable of driving a motor in four modes:-
1. Drive right
2. Drive left
3. Short circuit motor (Brakes Motor)
4. Open circuit motor

Mode 3 is used to stop the motor quickly by switching Tr23 and 25 On and TR24 and 26 Off. Mode 4 allows the motor speed to be measured by switching off all of the power transistors.
All four modes are controlled via pins 8 and 9 of the microprocessor IC2.

1.4 Analogue to digital Converter
IC3.4 and 9 form a software driven analogue to digital Converter. IC3 and 9 are 8 channel multiplexed analogue switches routing all analogue signals, (see table below), through to IC4 which is configured as an integrator. C9 is discharged at a constant rate triggering the comparator IC5 as it reaches a level of approximately 0.53v. The output of the comparator is connected to the microprocessor allowing measurement of the discharge time which is directly proportional to the analogue input. Analogue channels:-

<table>
<thead>
<tr>
<th>IC3</th>
<th>Channel 0</th>
<th>Reset integrator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Channel 1</td>
<td>Integrator discharge signal</td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td>Fluxgate sense A</td>
</tr>
<tr>
<td></td>
<td>Channel 3</td>
<td>Fluxgate sense B</td>
</tr>
</tbody>
</table>
Channel 4 Feedback 1 (FB1)
Channel 5 Feedback 2 (FB2)
Channel 6 Not used
Channel 7 Not used
IC9 Channel 0 Not used
 Channel 1 Not used
 Channel 2 Rudder Reference (RUDDER)
 Channel 3 Supply Monitor (INPUT VOLTS)
 Channel 4 Not used
 Channel 5 Not used
 Channel 6 Joystick
 Channel 7 Not used

1.5 Clutch Drive
TR10, 11 and 12 switch a nominal 12v onto the actuator clutch whenever pin 15 of the microprocessor (IC2) is low at 0v.

1.6 Seatalk Bus Transmit and Receive
Seatalk transmit and receive circuitry consists of TR1,3,4,5,18 and 19 and their associated components. Data transmission is at 4800 baud with a low start bit and line idling high. TR1 and TR2 provide high and low drive respectively, whilst TR3 and R1 give overload protection to TR2 in the event of misconnection. TR4 and TR5 allow the microprocessor to monitor its own transmissions and also to receive data from other units on the bus.

1.7 Fluxgate drive
IC2 produces bursts of 8KHz pulses on pin 2 which are then fed through TR6,7 and 8 and AC coupled to the fluxgate via C3.

1.8 E2 prom
IC8 is an E2 PROM which allows calibration values to be stored and recalled each time after power up. Sequential data is written to the e2 prom on pin 3 and read back on pin 4.

1.9 Supply voltage monitor
R53 and R54 scale down the supply voltage and feed it through to the A/D converter to enable the microprocessor to transmit a warning on the Seatalk bus if the supply voltage drops below 11.2v for 10 seconds or more.
ST6000 (Z123) Terminal PCB Assembly

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PART N°</th>
<th>Q'TY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>07212</td>
<td>2</td>
<td>TERMINAL BLOCK (2 WAY) TB5.6</td>
</tr>
<tr>
<td>4</td>
<td>07106</td>
<td>2</td>
<td>TERMINAL BLOCK (3 WAY) TB2.4</td>
</tr>
<tr>
<td>3</td>
<td>07109</td>
<td>1</td>
<td>TERMINAL BLOCK (4 WAY) TB1.3</td>
</tr>
<tr>
<td>2</td>
<td>07118</td>
<td>1</td>
<td>D'CONNECTOR SK1</td>
</tr>
<tr>
<td>1</td>
<td>3015-041</td>
<td>1</td>
<td>PCB DETAIL</td>
</tr>
</tbody>
</table>

COLOR KEY FOR SILK SCREENING DOTS:
- WHITE
- YELLOW
- GREEN
- RED
- BROWN
- BLUE
- BLACK
Type CR Interface Box (Z085)

1. Service Procedures
Autohelm

Contents

1. Description .. 3
2. Functional Test .. 3
3. Operation non Autohelm power packs 4
1. Description
All type CR systems are driven with a standard course computer and terminal board which interfaces to a type CR interface box (Z085). The same interface box is used for both 12V and 24V systems and can be functionally tested by using the following procedure.

2. Functional Test
Connect + 12V to clutch (+) and battery (+). Connect 0V to clutch (-) and battery (-). Confirm with a multimeter that 12V is present across the bypass connections. Remove the +12V from clutch (+) and confirm that 0V is present across the bypass connections.
Autohelm

3. Operation with non Autohelm Power Packs
If the Type CR Interface Box is to be used to drive non-Autohelm power packs the following points should be noted:
2. Solenoid drop-out voltage >2V.
3. Solenoid nominal operating voltage should be the same as the pilot.
2. Technical Information

Contents

1. Circuit Description 2

Illustrations

Fig. 1. Circuit Diagram 3
Fig. 2. PCB Assembly 4
Fig. 3. Parts List 5
1. Type CR Interface Box PCB Circuit Description
The course computer clutch signal activates RLY1 which in turn supplies current to a bypass valve, if fitted. D1 suppresses any inductive spikes produced when the valve is switched and D2 protects against supply misconnection. Each solenoid drive is derived by connecting one side of the solenoid to a motor terminal and the other side to 0V.
Fig. 1. Z085 Type CR Interface Box Circuit Diagram

SeaTalk Service Manual
7000 Type CR Parts List

<table>
<thead>
<tr>
<th>Item</th>
<th>DR'G/Part No</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB detail</td>
<td>3015-038</td>
</tr>
<tr>
<td>Diode MR751 D1</td>
<td>02031</td>
</tr>
<tr>
<td>Diode (Fast Recovery) MR850 D1</td>
<td>02036</td>
</tr>
<tr>
<td>PCB Connector</td>
<td>07-212</td>
</tr>
<tr>
<td>Relay T9030A RL1</td>
<td>15057</td>
</tr>
<tr>
<td>Dust Cover</td>
<td>15111</td>
</tr>
</tbody>
</table>
Rudder Reference Transducer (Z131)

Service Procedures
Contents

1. Description 3
2. Functional Test 3

Illustration

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1. Rudder Reference Body Assembly</td>
<td>4</td>
</tr>
<tr>
<td>Fig. 2. Rudder Reference General Assembly</td>
<td>5</td>
</tr>
</tbody>
</table>
1. Description
The Z131 Rudder Reference contains a single turn 5k ohm plastic potentiometer to provide the autopilot with rudder position information. When replacing, correct installation is vital if optimum steering performance is to be achieved. The Rudder Reference unit arm movement is limited to +/-60 degrees. Care must be taken to ensure that the arm is opposite the cable entry when the rudder is amidships. Failure to do this could result in damage to the Rudder Reference if the arm is driven into its end stops by the steering system. Once detected as faulty the Rudder Reference unit should be replaced as a complete unit.

2. Functional Test
The Rudder Reference unit, when disconnected from the autopilot, can be functionally tested by checking the following resistance measurements:-

<table>
<thead>
<tr>
<th>Cable colour</th>
<th>Arm position</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green/Red</td>
<td>Any position</td>
<td>5k ohm +/-5%</td>
</tr>
<tr>
<td>Blue/Green</td>
<td>Anticlockwise stop</td>
<td>1.66k ohm +/-10%</td>
</tr>
<tr>
<td>Blue/Green</td>
<td>Clockwise stop</td>
<td>3.33k ohm +/-10%</td>
</tr>
</tbody>
</table>
Autohelm

Z131 Rudder Reference Body Assembly
Fluxgate Compass Transducer (Z130)

Service Procedures
Autohelm

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Description</td>
<td>3</td>
</tr>
<tr>
<td>2. Functional Test</td>
<td>3</td>
</tr>
<tr>
<td>3. Magnetic Deviation</td>
<td>3</td>
</tr>
<tr>
<td>4. Gimble Support Bracket Installation</td>
<td>5</td>
</tr>
<tr>
<td>5. Fluxgate Sensor Replacement</td>
<td>5</td>
</tr>
<tr>
<td>6. Product History</td>
<td>6</td>
</tr>
<tr>
<td>7. Spares Numbers</td>
<td>6</td>
</tr>
</tbody>
</table>

Illustrations

- Fig. 1. Fluxgate General Assembly 4
Fluxgate Compass Transducer (Z130)

1. Description
The Z130 Fluxgate Compass Transducer contains a precision Fluxgate sensor. This can be replaced by following the procedures in Section 5. Some early models (pre Serial No 600001) were susceptible to damage in transit (fluxgate sensor springing free from gimbal assembly). If received for service these units should be modified using the gimbal support bracket (see section 4).

2. Functional Test
Disconnect the Fluxgate from the autopilot and check continuity as follows:-

<table>
<thead>
<tr>
<th>Cable Colour</th>
<th>Connector pin no</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen to Blue</td>
<td>2/4</td>
<td>< 10 ohms</td>
</tr>
<tr>
<td>Red to Green</td>
<td>3/5</td>
<td>< 5 ohms</td>
</tr>
<tr>
<td>Red to Yellow</td>
<td>3/6</td>
<td>< 5 ohms</td>
</tr>
<tr>
<td>Red to Screen</td>
<td>3/2</td>
<td>Open circuit</td>
</tr>
</tbody>
</table>

3. Magnetic Deviation
The Z130 Fluxgate Compass requires careful siting if optimum autopilot performance is to be achieved. The SeaTalk Course Computers are able to correct the compass for any deviating magnetic fields present when the linearisation procedure is carried out. Any further deviation, introduced after linearisation, will introduce an error between the Fluxgate and the ship's compass. This can be removed by carrying out the linearisation procedure again. If the displayed deviation is greater than +/-15 degrees the Fluxgate should be re-sited.

Note:
The linearisation procedure should always be carried out if the fluxgate has been exchanged, removed or moved from its original mounting position.
4. Gimbal Support Bracket installation (Spares Kit M096)
This kit comprises of a back case, cable assembly, pivot blocks, support bracket and pivot retaining screws.
1. Remove the four case screws and take off the front cover and seal.
2. Carefully remove the flexible circuit from the connector in the rear moulding.
3. Remove and discard the pivot block mounting screws and lift away the fluxgate assembly.
4. Build the Fluxgate assembly into the new back case as shown in fig. 1. Use the new screws supplied to retain the pivot mounting blocks and support bracket. Use only hand screw drivers for re-assembly to ensure screws are not over tightened. Rotate screws anticlockwise to locate in the thread before tightening.
5. Carefully insert the flexible circuit tail into the connector in the rear moulding. Ensure the tail is not twisted and passes over the support bracket (see fig. 1.)
6. Before installing the cover check the gimbal action of the new assembly by tilting the case in all directions and observing the fluxgate movement.
7. Refit the front cover and seal (again rotating the screws anticlockwise to locate and tightening with a hand screw driver).
8. Functionally check the Fluxgate with a D.V.M. as follows:

<table>
<thead>
<tr>
<th>Cable Colour</th>
<th>Connector Pin no.</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen to Blue</td>
<td>2/4</td>
<td><10ohms</td>
</tr>
<tr>
<td>Red to Green</td>
<td>3/5</td>
<td><5 ohms</td>
</tr>
<tr>
<td>Red to yellow</td>
<td>3/6</td>
<td><5 ohms</td>
</tr>
<tr>
<td>Red to Screen</td>
<td>3/2</td>
<td>Open circuit</td>
</tr>
</tbody>
</table>

5. Fluxgate Sensor replacement (Spares kit M022)
1. Remove the four case screws and take off the front cover and seal.
2. Carefully remove the flexible circuit from the connector in the rear moulding.
3. Remove the pivot block mounting screws and lift away the fluxgate assembly.
4. Build the Fluxgate assembly into the back case as shown in fig. 1. Use only hand screw drivers for re-assembly to ensure screws are not over tightened. Rotate screws anticlockwise to locate in the thread before tightening.
5. Carefully insert the flexible circuit tail into the connector in the rear moulding. Ensure the tail is not twisted and passes over the support bracket (see fig. 1.)
6. Before installing the cover check the gymballing action of the new assembly by tilting the case in all directions and observing the fluxgate movement.
7. Refit the front cover and seal (again rotating the screws anticlockwise to locate and tightening with a hand screw driver).
8. Functionally check the Fluxgate with a D.V.M. as follows:

<table>
<thead>
<tr>
<th>Cable Colour</th>
<th>Connector Pin no</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen to Blue</td>
<td>2/4</td>
<td><10ohms</td>
</tr>
<tr>
<td>Red to Green</td>
<td>3/5</td>
<td>< 5 ohms</td>
</tr>
<tr>
<td>Red to yellow</td>
<td>3/6</td>
<td>< 5 ohms</td>
</tr>
<tr>
<td>Red to Screen</td>
<td>3/2</td>
<td>Open circuit</td>
</tr>
</tbody>
</table>
6. Product history - Fluxgate Compass (Z130)

<table>
<thead>
<tr>
<th>Change</th>
<th>Serial No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Start</td>
<td>400001</td>
<td></td>
</tr>
<tr>
<td>Gimbal Support</td>
<td>600001</td>
<td>Reduces risk of fluxgate assembly becoming dislodged during transit.</td>
</tr>
<tr>
<td>bracket added</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Spares Numbers - Fluxgate Compass (Z130)

<table>
<thead>
<tr>
<th>Item</th>
<th>Catalogue No.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluxgate bobbin &</td>
<td>M022</td>
<td>Includes inner gimbal sub-assembly and 2 x pivot assemblies.</td>
</tr>
<tr>
<td>Gimbal Assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support bracket</td>
<td>M096</td>
<td>Includes back case cable assembly pivot blocks, support bracket and pivot retaining screws, (fitted as standard to units built after Serial No 600001.</td>
</tr>
</tbody>
</table>
Autohelm
Fluxgate Compass (Z105)
Contents

1. Description 3
2. Functional Test 3
3. Magnetic Deviation 3
Fluxgate Compass (Z105)

1. Description
The Z105 Fluxgate Compass Transducer contains a precision Fluxgate sensor and, once detected as faulty, should be replaced as a complete unit.

2. Functional Test
Disconnect the Fluxgate from the autopilot and check continuity as follows:-

<table>
<thead>
<tr>
<th>Cable Colour</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen to Blue</td>
<td>< 10 ohms</td>
</tr>
<tr>
<td>Red to Green</td>
<td>< 5 ohms</td>
</tr>
<tr>
<td>Red to Yellow</td>
<td>< 5 ohms</td>
</tr>
<tr>
<td>Red to Screen</td>
<td>Open Circuit</td>
</tr>
</tbody>
</table>

3. Magnetic Deviation
The Z105 Fluxgate Compass requires careful siting if optimum autopilot performance is to be achieved. The SeaTalk Course Computers are able to correct the compass for any deviating magnetic fields present when the linearisation procedure is carried out. Any further deviation, introduced after linearisation, will introduce an error between the Fluxgate and the ships compass. This can be removed by carrying out the linearisation procedure again. If the displayed deviation is greater than +/-15 degrees the Fluxgate should be re-sited. Note:
The linearisation procedure should always be carried out if the fluxgate has been exchanged, removed or moved from its original mounting position.
Rudder Reference Transducer (Z060)
Autohelm

Contents

1. Description and Functional Test 3
2. Resetting Centre Position 3
3. Product History 7

Illustrations

Fig. 1. Rudder Reference Unit Standard Installation 5
Fig. 2. Adjusting Centre Position 6
1. Description and Functional Test
The rudder reference transducer contains a single turn plastic potentiometer to provide the course computer with rudder position information.
With the rudder reference transducer disconnected from the connector unit, its operation can be checked as follows:-
 a) Connect an Ohmeter across the blue and red wires.
 b) Position the rudder reference transducer arm diametrically opposite the cable gland and check the reading is between 2.2 and 2.8K ohm.
 c) Slowly rotate the arm in both directions and check that the resistance increases and decreases smoothly according to arm movement.
A faulty rudder reference transducer is replaced as a complete unit.

2. Resetting Centre Position
It is important that the rudder reference transducer is correctly centred to ensure that the potentiometer output remains within the working range of the Analogue to Digital converter (1.0V to 4.0V). During assembly, the unit is set up to ensure that when the rudder reference transducer arm is diametrically opposite the cable gland, the wiper is at its mid position. The installation instructions then direct the installer to mount the transducer so that with the rudder amidships the arm is diametrically opposite the cable gland (see figure 31). Should it be necessary to install the transducer with its arm in an alternative position to the cable gland, the centre position of the potentiometer must be reset as follows (see figure 32).
1. When the rudder is amidships, determine the orientation of the rudder reference transducer arm to the cable gland.
2. Remove the plastic base plug from the underside of the transducer and connect an ohmeter across the red and blue wires.
3. Remove the plastic cap from the top of the unit to gain access to the locking nut of the taper collet.
4. Slacken the locking nut until the potentiometer shaft can be turned within the rudder reference transducer cap.
5. Position the arm as determined in 1. and rotate the potentiometer shaft with a screwdriver until the meter reads between 2.4 and 2.6k ohm.
6. While pressing the potentiometer and potentiometer mounting plate into the rudder reference transducer body, tighten the locking nut to clamp the potentiometer shaft to the cap.
7. Confirm the meter still reads between 2.4 and 2.6k ohm.
8. Check that the total vertical movement at the end of the transducer arm is less than 1.5mm. If it is greater, steps 4. to 8. must be repeated ensuring that the potentiometer and mounting plate are fully pressed into the transducer body.
9. Finally, replace the plastic plug into the base and the cap into the tap.
Autohelm

Fig. 1. Rudder Reference Unit Standard Installation
Fig. 2. Adjusting Centre Position

- Plastic Cap
- Rudder Reference Transducer Cap
- Plastic Base Plug
- Locking Nut
- Taper Collet
- Potentiometer Shaft

To tighten locking nut, use tool 5008.
3. Product History Rudder Reference (Z060)

<table>
<thead>
<tr>
<th>Change</th>
<th>Serial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slotted mounting holes introduced</td>
<td>980001</td>
</tr>
<tr>
<td>Stainless Steel fittings introduced</td>
<td>290001</td>
</tr>
<tr>
<td>Stainless Steel studding introduced</td>
<td>K90001</td>
</tr>
</tbody>
</table>
Pushpit Windvane Transducer (Z087)

Masthead Windvane Transducer (Z080)

Service Procedures
Contents

1. Description .. Page 3
2. Functional Test (Z080 Masthead Transducer) 3
3. Functional Test (Z087) Pushpit Transducer 3
4. Product History .. 4
5. Spares Numbers ... 4

Illustrations

Fig. 1. Z080 Masthead General Assembly 5
Fig. 2. Z080 Mount Assembly 6
1. Description
The Z080 and Z087 Windvane transducers are only compatible with Autohelm Seatalk products. The push pit transducer (2087) is identical to the Vane transducer in the Masthead Unit (Z080). When connecting a masthead Transducer (Z080) to an Autohelm ST7000 Autopilot do not connect the yellow core into the Aux 1 connector in the connector box. Simply connect the other four cores and trim the yellow back short.

2. Functional Test (Z080 Masthead Transducer)
The operation of the Z080 masthead mounted windvane can be checked using the following procedure:
1. Connect +8V dc to the red core and 0V to the screen.
2. Connect a digital volt meter across the screen and the green core.
3. Rotate vane head through 360 degrees and check that the meter reading oscillates sinusoidally. The maximum reading must be between 6V and 5.5V. The minimum reading must be between 2V and 2.5V.
4. Repeat section 3 with the meter connected across the blue core and screen. The anemometer transducer can not easily be tested and a replacement pod should be fitted if suspected faulty.

3. Functional Test (Z087 Pushpit transducer)
The pushpit vane transducer can be functionally checked by following the Masthead test procedure.
4. Product History (Z080 Masthead Transducer)

<table>
<thead>
<tr>
<th>Change</th>
<th>Serial No.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Start</td>
<td>590001</td>
<td></td>
</tr>
<tr>
<td>Drain hole added to anemometer boss</td>
<td>K90001</td>
<td></td>
</tr>
<tr>
<td>Connector housing length increased</td>
<td>K90164</td>
<td>Allows mast arm assembly to be located tighter onto mast socket</td>
</tr>
<tr>
<td>Self cut grub screws replace brass inserts in vane and anemometer bosses</td>
<td>L90000</td>
<td>Tighter location of vane and cups onto respective transducer shafts</td>
</tr>
</tbody>
</table>

5. Spares Numbers (Z080 Masthead Transducer)

<table>
<thead>
<tr>
<th>Item</th>
<th>Catalogue No.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vane transducer pod</td>
<td>Q001</td>
<td>Used on both Z080 and Z087 transducers</td>
</tr>
<tr>
<td>Anemometer transducer pod</td>
<td>Q002</td>
<td></td>
</tr>
<tr>
<td>Masthead transducer arm</td>
<td>Q025</td>
<td>Mast arm and pod housing without transducer pods</td>
</tr>
<tr>
<td>Masthead socket and cable</td>
<td>Q026</td>
<td></td>
</tr>
<tr>
<td>Vane and Cups</td>
<td>D139</td>
<td></td>
</tr>
</tbody>
</table>
Linear Drive Units

Service Procedures

Linear Drive Unit (Z029, Z032)

Linear Drive Unit (Z029, Z058, Z059)
Autohelm

Contents

1. Linear Drive Unit Introduction 3
2. Inspection 3
3. Dismantling 3
4. Re-assembly 4
5. Operation with non Autohelm Autopilots (24V systems) 4
6. Functional Test 4
7. Product History (Type 2 Long Stroke) 8
8. Product History (Type 1) 8
9. Product History (Type 2 Short Stroke) 8
10. Spares Numbers 9

Illustrations
Fig. 1. General Assembly 7
1. Linear Drive Unit
The linear drive unit comprises a belt drive reduction stage from the motor, a single epicyclic gearbox and a two start recirculating-ballscrew to provide linear motion. An electromagnetic clutch locks the outer ring of the epicyclic gearbox when drive is required. The drive is unique in providing efficient drive combined with very smooth backdrive at extremely low loads.

2. Inspection
Before stripping down or testing the drive unit, a close visual inspection should be made to establish if the cause of the problem is external. Poor mechanical installation where the unit can foul obstructions, particularly at the end of stroke, can distort the drive module and lead to rough operation and high backdrive loads. The drive module is assembled at Nautech in a dirt free environment to precise limits. If disturbed, rough operation and high backdrive loads will result.

3. Dismantling
After removing the unit from the boat and to gain access to drive motor, drive belt, clutch rotor or drive module the following steps apply:
 a) Unscrew and remove the two caphead screws which secure the plastic dust cover to the main unit (use 'M3' alien key). Slide the dust cover off the girdle tube.
 b) Unscrew and remove the four M6 caphead screws with washers and the two long hexagonal studs at the centre-sides of the master plate. Separate the mounting cover assembly from the master plate assembly, after feeding the cables through the grommet.
 c) If servicing the clutch rotor assembly, remove it from the mounting plate by unscrewing the central caphead screw which secures the assembly to the casting. Note that the assembly is sprung loaded and care should be taken when removing.
 d) If replacing the drive belt, loosen the three M6 caphead screws with washers which secure the motor to the masterplate. With the tension taken off the belt it can be slipped off both pulleys.
 e) If replacing the drive motor unscrew and remove the three M6 caphead screws as above and take the weight of the motor as it is released. Note that the power cables are extended and passed through grommets in the masterplate. Remove the drive belt.
 f) If servicing the drive module, follow steps a) b) d) and e) above. Then remove the circlip at the front of the clutch plate/ring gear assembly and withdraw the assembly. Locate the leadscrew journal and carrier on a firm block to prevent bending the journal and drive out the roll pin securing the carrier to the leadscrew (general assembly).
Slide off the carrier assembly and the four planet gears. Finally withdraw the driven pulley assembly from the drive module.

4. Re-assembly
In all cases rebuilding the unit is a straight reversal of the above procedures, but the following points should be noted:-

a) If replacing a drive motor, first ensure that the drive pulley is fitted in the correct orientation (general assembly). Ensure that the motor spindle is degreased and dried thoroughly before bonding the pulley to the shaft with Loctite 601 or equivalent anaerobic adhesive. After bonding, the unit should not be put under power for at least one hour.

b) If replacing the clutch rotor assembly, ensure the rotor can be pulled forward along the two dowels against the spring and when released returns hard against the mounting cover. If this is not done, the assembly will jam the drive train when the unit is rebuilt. Also after the unit is completely rebuilt check for a metallic click when the clutch voltage is applied and removed showing the clutch is operating correctly.

c) When rebuilding from the drive module stage, ensure that the driven pulley, planet gears, washers and carrier are all correctly located and turning freely before and after the roll pin securing the carrier to the leadscrew is refitted. Note that extreme care must be taken to fully support the leadscrew journal when driving the roll pin back into the carrier. This prevents the leadscrew journal from being bent. Check for free movements of the ram tube in and out before proceeding further. When refitting the clutch plate assembly ensure that it is engaged correctly with the planet gears before refitting the washer and circlip. Check again for free ram tube movement before refitting the mounting cover.

d) Ensure that all cables are correctly routed, secured and pulled through away from moving parts.

e) Check the correct length drive module, drive motor and product label have been used.

5. Operation with non Autohelm Autopilots (24v systems)
It should be noted that the 24V version of the Autohelm linear drive requires a 12V clutch signal. If used with other manufacturers autopilots, steps should be taken to limit the voltage supplied to the clutch.

6. Functional Test
Having reassembled the drive unit the following functional test (Fig.2) must be completed.
Linear Drive Unit - Functional Test Procedure (Z029, Z032, Z039, Z085, Z059)

1. Connect multimeter to clutch cable and check impedance is between 25Ω and 35Ω.
 - NO: Check connections to clutch winding. Check for damage to winding.
 - YES: Connect to AH 7000 System Switch on.

2. Press Auto then Standby a few times.

3. Clutch operation audible on each press?
 - NO: Check clutch housing is free to move. Re-check electrical connections.
 - YES: No load current within limits? *

4. No load current within limits?
 - NO: Too low:- check supply voltage. Check correct motor is fitted. Too high:- slacken motor bolts and tighten with the belt pinched.
 - YES: A

*Note: All measurements should be taken at idle or with the system at rest.
* No load current limits :- Minimum (A) Maximum (A)
Type 1 (Z039) 2.0 3.0
Type 2 12V (Z029, Z058) 2.5 3.5
Type 2 24V (Z032, Z059) 1.0 2.5
Fig. 1. Linear Drive Unit (Z029, Z032, Z039, Z058, Z059) General Assembly
7. Product History Type 2 Linear Drive Actuators (Long Stroke) (Z029 & Z032)

<table>
<thead>
<tr>
<th>Change</th>
<th>Serial Number</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>470001</td>
<td></td>
</tr>
<tr>
<td>Fracmo Motors introduced</td>
<td>780042</td>
<td></td>
</tr>
<tr>
<td>Girdle Buffer/Stop material changed</td>
<td>790045</td>
<td>Extended high temperature use caused rubber buffer to swell giving higher back drive</td>
</tr>
<tr>
<td>Rockford Leadscrew introduced</td>
<td>100002</td>
<td></td>
</tr>
</tbody>
</table>

8. Product History Type 1 Linear Drive Actuators (Z039)

<table>
<thead>
<tr>
<th>Change</th>
<th>Serial Number</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>470003</td>
<td></td>
</tr>
<tr>
<td>Fracmo Motors introduced</td>
<td>680086</td>
<td></td>
</tr>
<tr>
<td>Girdle Buffer/Stop material changed</td>
<td>790068</td>
<td>Extended high temperature use caused rubber buffer to swell giving higher back drive</td>
</tr>
<tr>
<td>Rockford Leadscrew introduced</td>
<td>100002</td>
<td></td>
</tr>
</tbody>
</table>

9. Product History Type 2 Linear Drive Actuators (Short Stroke) (Z058 & Z059)

<table>
<thead>
<tr>
<th>Change</th>
<th>Serial No.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>470001</td>
<td></td>
</tr>
<tr>
<td>Fracmo Motors introduced</td>
<td>780042</td>
<td></td>
</tr>
<tr>
<td>Girdle Buffer/Stop material changed</td>
<td>790045</td>
<td>Extended high temperature use caused rubber to swell giving higher backdrive.</td>
</tr>
<tr>
<td>Rockford Leadscrew introduced</td>
<td>100002</td>
<td></td>
</tr>
</tbody>
</table>
10. Spares Numbers - Linear Drive Units (Z029, Z032, Z039 Z058 & Z059)

<table>
<thead>
<tr>
<th>Item</th>
<th>Catalogue No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Motor (Z039)</td>
<td>N001</td>
</tr>
<tr>
<td>Drive Motor (Z058 & Z029)</td>
<td>N002</td>
</tr>
<tr>
<td>Drive Motor (Z032 & Z059)</td>
<td>N003</td>
</tr>
<tr>
<td>Short Stroke drive module</td>
<td>N004</td>
</tr>
<tr>
<td>Long Stroke drive module</td>
<td>N005</td>
</tr>
<tr>
<td>Drive Belt</td>
<td>N006</td>
</tr>
<tr>
<td>Clutch/Rotor</td>
<td>N007</td>
</tr>
</tbody>
</table>
Rotary Drive Units (Z028, Z031 & Z037)
1. Rotary Drive Unit
The rotary drive unit comprises a belt drive reduction stage from the motor, and a two stage epicyclic gearbox. An electro-magnetic clutch locks the outer ring of the first stage gearbox when drive is required. This arrangement provides very quiet operation with low backdrive torques.

2. Dismantling
After removing the unit from the boat and to gain access for drive motor, drive belt or clutch replacement, the following steps apply:-
 a) Unscrew and remove two caphead screws using M3 alien key. These screws secure the plastic cover to the main unit. Ease the power supply and clutch cables through the grommet whilst removing the plastic cover and finally remove the cover altogether.
 b) If servicing the clutch assembly remove the dust cover as above then unscrew and remove the two caphead screws which secure the clutch rotor and plate assembly to the two pillars holding it off the main assembly (use a M3 alien key).
 c) The clutch rotor is fixed to its plate by one caphead screw through the centre which is spring loaded. Therefore, care should be taken to hold the clutch rotor as the screw is removed.
 d) If servicing the drive motor assembly, remove the dust cover as above then unscrew and remove the 4 x 6mm caphead screws with washers and also the two long hexagonal studs at the centre sides of the main assembly. The mounting cover assembly can now be removed from the master plate. Care must be taken when removing the cover assembly to ensure the drive gear disengages without damage. This is best done with the mounting cover placed down on the bench and the drive motor facing uppermost so that the planet gears within the mounting cover will stay in place. If they become dislodged keep them safely ready for reassembly.
 e) Support the motor, unscrew and remove the three M6 caphead screws and washers securing the motor to the master plate and slip the drive belt off the pulley.
 f) If replacing the drive belt it will only be necessary to loosen the three screws that secure the motor to take the tension off the belt whilst it is slipped off both pulleys.

3. Reassembly
In all cases rebuilding the unit is a straight reversal of the above procedures, but the following points should be noted:-a) When refitting a drive motor ensure that the drive pulley is fitted to the motor shaft in the correct orientation (general assembly). Note also that the motor shaft should be degreased with a suitable solvent and dried off thoroughly before bonding the pulley in place using Loctite 601 or equivalent anaerobic adhesive. Following bonding the unit should not be placed under full power for at least one hour.
Autohelm

b) When rebuilding the clutch rotor and plate assembly ensure the rotor can be pulled forward along the two dowels against the spring and when released it returns hard against the mounting plate. If this is not done, the assembly will jam the drive train when the unit is rebuilt. Also, check it pulls in and releases when a voltage is applied and removed.

c) When refitting the mounting cover to master plate assembly, firstly ensure that all four planet gears are correctly fitted and freely rotate when the drive shaft is rotated. Secondly, when lowering the master plate onto the mounting cover it will help to locate the gear train if the drive shaft is rotated slightly to engage the geared shaft with the planet gears. Ensure the drive train rotates freely before refitting and tightening all the screws.

d) When refitting the dust cover ensure that all leads are either secured to the hexagonal pillars or pulled uptight through the grommet so that they are kept clear of any moving parts.

e) Ensure that the correct drive motor (and product label) is fitted by a simple voltage and current test checked against the serial number.

4. Operation with non Autohelm Autopilots (24v systems)

It should be noted that the 24V version of the Autohelm rotary drive requires a 12V clutch signal. If used with other manufacturers autopilots, steps should be taken to limit the voltage supplied to the clutch.

5. Functional Test

Having reassembled the drive unit, the following functional test (Fig.2) must be completed.

Without stalling the output shaft it is impossible to check for clutch slip and so care must be taken when handling the drive unit to ensure that no grease is allowed onto the clutch surfaces.
Rotary Drive Unit - Functional Test Procedure (Z028, Z031, Z038)

Connect multimeter to clutch cable and check impedance is between 25Ω and 35Ω

NO

Check connections to clutch winding. Check for damage to winding.

YES

Connect to course computer. Switch on.

Press Auto then Standby a few times.

Clutch operation audible on each press?

NO

Check clutch housing is free to move. Re-check electrical connections.

YES

No load current within limits *?

NO

Too low: check supply voltage. Check correct motor is fitted. Too high: slacken motor bolts and tighten with the belt pinched.

YES

Drive Unit O.K.

*No load current limits:

<table>
<thead>
<tr>
<th>Type</th>
<th>Minimum (A)</th>
<th>Maximum (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Type 2 12V</td>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Type 2 24V</td>
<td>1.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>
6. Spares numbers - Rotary Drive Units (Z028, Z031, Z037)

<table>
<thead>
<tr>
<th>Item</th>
<th>Catalogue No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Motor (Z037)</td>
<td>N001</td>
</tr>
<tr>
<td>Drive Motor (Z028)</td>
<td>N002</td>
</tr>
<tr>
<td>Drive Motor (Z031)</td>
<td>N003</td>
</tr>
<tr>
<td>Drive Belt</td>
<td>N006</td>
</tr>
<tr>
<td>Clutch/Rotor</td>
<td>N007</td>
</tr>
</tbody>
</table>
Hydraulic Drive Units Service Procedures

Type '0' Piston Pump (Z081)

Constant Running Power Pack (Z064, Z065, Z066, Z067)

Reversing Gear Pump (Z030, Z033, Z041)
Autohelm

Contents

1. Hydraulic Drive Units Introduction 3
2. Constant Running Power Pack (Z064/65/66/67) 3
2.1 Dismantling and Re-assembly 3
3. Reversing Gear Pumps (Z030/33/41) 6
4. Type '0' Piston Pump (Z081) 8
4.1 Type '0' Pump Re-installation 8
4.2 Type '0' Pump Bleeding 8

Illustrations

Fig. 1. Constant Running Power Pack General Assembly 5
Fig. 2. Reversing Gear Pump General Assembly 7
Fig. 3. Type '0' Pump Bleeding 9
1. Hydraulic Drive Units

Three types of hydraulic drive units are covered, the constant running power pack, the reversing gear pumps and the type '0' piston pump. The most common cause of problems is trapped dirt in the valve assemblies between the balls and their seats. This provides a short circuit path for the oil, which will greatly reduce the pressure generated to move the steering cylinder. It is important to observe absolute cleanliness at all times during dismantling and reassembly. If it is necessary to service the drive units when installed the following points should be observed:
- Hydraulic pressurised systems must be depressurised before work is started.
- The drive unit should be isolated from the main steering system to minimise fluid loss.

2. Constant Running Power Pack (Z064, Z065, Z066, Z067)

The constant running hydraulic power pack provides a drive unit for larger vessels with steering cylinder displacements above 400cc. The power pack motor is switched independently of the autopilot and runs continuously. When rudder movement is required, the solenoid valves are energised by the course computer to direct the flow to the steering cylinder.

The servicing information allows replacement of the solenoid valve assembly, inspection and cleaning of the check valve and relief valve assembly and seal replacement. It is not possible to service the pump and filter assembly which are contained within the reservoir as the reservoir seal requires special assembly techniques.

2.1 Dismantling and Reassembly

a) To remove the solenoid valve, undo the four caphead bolts securing it to the manifold. Remove the valve carefully to ensure the 0 ring seals are not lost. Reassembly is a simple reversal of this procedure.

b) To clean the check valve assembly, unscrew the cartridge and remove it along with the washer and 0 ring seal. The spring and ball can then be taken out. The seat and 0 ring will probably remain in position and oil from the reservoir is likely to wash out any dirt that could have been causing problems. If the check valve assembly is further dismantled, care must be taken when reassembling to prevent damage to the 0 rings. The best method is to place the 5/8" Sin. 0 ring and seat in the manifold and screw in the cartridge (without the ball or spring) to position the seat within its sealing ring. The cartridge can then be removed and the ball and spring positioned within the cartridge. Some grease may be used to retain them whilst the cartridge with its 0 ring and washer is screwed into position.
c) If the relief valve assembly is removed, the relief valve setting should be checked after reassembly. The factory pre-set is 750 psi.
d) Ensure all parts are reassembled in the current sequence and nothing is missed out during reassembly.
Fig. 1.Z064/6 5/66/67 – Constant Running Power Packs – Pilot Check and Relief Valve
General Assembly
3. Reversing Gear Pumps (Z030f Z033, Z041)
Reversing Gear Pumps are fitted with a single check valve assembly which allows operation with unbalanced rams.
To clean the valve assemblies, it is usually only necessary to remove the cap, spring and ball. The dirt will in most cases be washed out with oil from the reservoir.
If the seats and 0 ring seals are removed, these are best replaced by using the cap (without the spring) to position them. The cap may then be removed, and reassembled with the spring in position. Ensure all parts are reassembled in the correct sequence and nothing is missed out.
Fig. 2. Z041, Z030, Z033 - Reversing Gear Pump
4. Type '0' Piston Pump (Z081)

A faulty type '0' pump should be replaced as a complete item. Care should be taken when removing the pump, not to introduce any dirt into the hydraulic system. The type '0' pump is sensitive to trapped air and care should be taken to remove it during installation and commissioning.

4.1 Type '0' Pump Reinstallation

When a faulty pump is replaced new sealing washers should always be installed between the fittings and the pump body. Connect the reservoir line to the pump leaving the two drive pipes disconnected at points A and B (Fig.3). Temporarily blank off the two tee unions to the steering system to avoid fluid loss. The pump should then be bled using the following procedures:

1. Fill pipe B with oil.
2. Connect pump drive cable to a 12V dc supply via a 10 ohm 50W resistor. This allows the pump to rotate slowly without cavitating.
3. Continue adding oil to pipe B as the level drops. Note: If oil is expelled from pipe B then reverse the connections to the pump.
4. Stop the pump when oil appears out of pipe A. Reconnect A to the steering system and repeat steps 2 and 3 until the steering ram moves.
5. Observe the movement of the ram and turn the helm pump in the opposite direction to keep the rudder stationary. This will cause any remaining air in pipe A to be drawn up to the helm pump and vented.
6. When all the air in pipe A is cleared stop the pump and reconnect pipe B to the steering system.
7. Reverse the polarity of the pump and repeat from section 5.

Note: This type of positive displacement pump is sensitive to trapped air. It should be thoroughly bled before using the autopilot.
Fig. 3. Type '0' Piston Pump Bleeding
Autohelm
Inboard/Outboard Drive Unit (Z088)

Service Procedures
Fig. 1. I/O Drive Unit - Exploded View (Z088)
4. Spares numbers - I/O Sterndrive Unit (Z088)

<table>
<thead>
<tr>
<th>Item</th>
<th>Catalogue No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Motor</td>
<td>N017</td>
</tr>
<tr>
<td>Drive Assembly</td>
<td>N018</td>
</tr>
<tr>
<td>Mercruiser Installation Kit</td>
<td>D137</td>
</tr>
<tr>
<td>Volvo Installation Kit</td>
<td>D129</td>
</tr>
</tbody>
</table>
1. I/O Drive Unit
The I/O drive unit comprises a motor with a two-stage spur reduction gearbox. A single toothed clutch transmits the torque to a recirculating ball screw. The clutch is held apart by a small spring to ensure the clutch tooth does not 'ratchet' when disengaged. The I/O drive unit may be used with all 610 versions of the AH6000 power pilot and both the SeaTalk ST6000 and ST7000 Autopilots. Servicing is restricted to motor replacement. Great care must be taken when servicing to ensure all screws are fully tightened. The I/O Drive Unit is subjected to high vibration levels and loose screws will quickly work free.

2. Motor Replacement (No 17)

2.1 Dismantling
- Unscrew the 2 off rear dust cover retaining screws and remove the dust cover.
- Unscrew the 4 off support plate retaining screws complete with washers.
- Carefully remove the support plate sub-assembly complete with Idler gear sub-assembly and 2 off spacers. Ensure that the support plate is held square during removal to prevent damage to clutch shaft. It is now possible to remove the clutch/gear core sub-assembly, spring and plastic bearing from clutch shaft.
- Undo the lock nut of the 4 pin connector and remove.
- Unscrew 2 off front dust cover retaining screws and push connector out of front dust cover.
- Slide dust cover along girdle tube sub-assembly to provide access to motor sub-assembly No. 17.
- Desolder the wires from the motor.
- Unscrew the 2 off motor retaining screws complete with washers and remove. Pull motor away from master plate sub-assembly.

2.2 Reassembly
- Assemble motor sub-assembly (No.17) to master plate sub-assembly and secure with 2 off screws complete with washers. (Fully tighten).
- Solder the wires to the new motor.
- Assemble connector to front dust cover and secure with lock nut.
- Slide dust cover along girdle tube and assemble to master plate.
Check that the motor and clutch leads are not trapped during assembly.
- Fully tighten the 2 off screws to secure dust cover.
- Reassemble the plastic bearing spring and clutch (gear) core sub-assembly to clutch shaft.
- Assemble the Idler gear sub-assembly complete with 2 off washers to support plate sub-assembly.
Autohelm

- Position the support plate sub-assembly on clutch shaft and ensure idler shaft and support plate pillars engage correctly, the support plate must be held square during assembly to prevent damage to the clutch shaft.
- Fully tighten the 4 off screws complete with washers to secure support plate.
- Assemble rear dust cover to master plate sub-assembly and fully tighten the 2 off securing screws.

3. Functional Test

It is important to check the clutch operation to make sure it will disengage even under load. Failure of the clutch to disengage is probably due to a damaged clutch tooth in which case the drive unit must be replaced.

The spur reduction gearbox is noisy compared to the epicyclic gearboxes on other drive units. This is normal. The no load motor running current with the clutch engaged should be less than 1.5A.

The clutch current at 10V should be between 0.7 and 10A. Connect the drive unit to an ST7000 system and switch on power. Set rudder gain to maximum.
- Press 'Auto'
- Press '+10' 7 times to drive the unit fully out.
- Check that clutch holds on end stops without any ratcheting.
- Press ‘Standby’
- Check that clutch disengages.
- Press 'Auto'
- Press -10 7 times to drive unit fully in.
- Check that clutch holds.
- Press ‘Standby’
- Check that clutch disengages.